

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Dark Matter Search Experiments with High-Resolution Nuclear Emulsion Tracker for Ultra-Short Tracks and Recent Application Developments

Takashi Asada Toho University On behalf of NEWSdm collaboration

KMI2025@Nagoya University

The NEWSdm experiment

NEWSdm

Nuclear Emulsions for WIMP Search with Directional Measurement

Website: <u>news-dm.lngs.infn.it</u>

Letter of intent: <u>https://arxiv.org/pdf/1604.04199.pdf</u>

- Direct dark matter search with **directionality**
- Target: nuclear emulsion film
- Combination of **high-speed** scanning / **high-precision** scanning
- Current status: analysis of pilot run and system update toward scale up
- Goal
 - 10 kg·year \rightarrow DAMA region
 - 10–100 ton·year \rightarrow neutrino floor

Direct Dark Matter search and directionality

The Advantage of Directionality for dark matter search

EWS Muclear Emulsions for WIMP Search -directional measurement

Nuclear emulsion

Electron microscope image (α-ray, crystal)

Readout System by Optical Microscope

PTS-2 @ Kanagawa U.

PTS-3 @ Nagoya

Inder

commissioning

T. Shiraishi, TN *et al.*, PTEP, 4, 043H01 (2021) A. Umemoto, TN *et al.*, PTEP 10, 103H02 (2020) Y. Katsuragawa, TN *et al.*, JINST 12(2017)T04002 M. Kimura and TN, Nucl. Inst. and Meth. A 680 (2012)

> 10 keV@proton (30 keV@C) 2D reconstructed

~ 0.4 kg/year/machine (100 times improved from pilot machine)

~ 1.2 kg/year/machine

3D reconstructed

• high resolution and wide range is detectable

WIMP signal Higher energy signal e.g., boosted DM

• kg scale capability

PTS-4 @ Toho

Obj. lens : x67, NA1.42 CMOS (4Mpix, 160 fps) Blue LED (455 nm)

PTS-5 @ Nagoya

500 keV@protor

Direction sensitivity calibration (2D)

■ Ion-implantation

Energy of Carbon	Angular resolution [deg.]		
100 keV	32 +- 3		
60 keV	35 +- 3		
30 keV	59 +- 2		

First Directional Sensitive search for DM

Source	Activity/Flux	background event rate (/mg/day)	
^{14}C in NIT	$21\pm6~{\rm Bq/kg}$	0.11 ± 0.04	
40 K in slide glass	$1.5\pm0.2~\mathrm{Bq/kg}$	0.09 ± 0.04	
$^{238}\mathrm{U}$ chain in slide glass	$3.0\pm1.0~\mathrm{Bq/kg}$	0.53 ± 0.21	
$^{232}\mathrm{Th}$ chain in slide glass	$0.9\pm0.1~\mathrm{Bq/kg}$	0.21 ± 0.09	
environmental γ ray	$\mathcal{O}(0.01) \ /s/cm^2$	0.21 - 0.55	
cosmic-ray (μ^{\pm})	$\mathcal{O}(0.01) \ /s/cm^2$	2.35 ± 0.70	
Total		3.50 ± 0.92	

muon limit at surface lab

consistent with flat background

Shielded Run in LNGS underground lab

concept: shielding and low temperature operation to suppress known BG

1

First BG Run result (Run3-6, 2021)

Am-y test

 $\times 2.6$ times difference for BG

→Not electron like

Standard emulsion

Low sensitivity emulsion

× 130 times difference for gamma

Simulation of gamma-electron background

Electron produced in emulsion (/d/plate(2g))	Hall F Film making	Hall F Development	Hall C transportation	Hall C shielding	CR1 Drying shielding
From Lead	-	3150	-	2400	<100
From environmental gamma	456360	60310	257140 (Hall C) 422650 (CR1)	13	10540
Counts (/d/plate(2g))	Drying shielding		Drying shielding	Drying shielding	
	(100% dry case)		(50% dry case)	(0% dry case)	
Electrons produced in emulsion	10540		53800	106900	
Gamma-rays entering emulsion	136500		138050	140100	

electron contribution will be very small

Radon (daughter) contamination at film production

new test in radon free room

Run with Radon Free Room

Run18

situation	time (h)	selection efficiency	Electron (/g/day)	wet factor	gamma TSL (/g)	¹⁴ C TSL (/g)
Set	0.5	1.0E-05	<2142836	0.003	< 0.0014	1.2E-06
Dry	21.6	1.0E-05	5270	1 (-0.01)	< 0.0473	0.0163
Exposure	454.0	3.3E-08	1207	1	0.0008	0.0011
Extraction	0.42	3.3E-08	128570	1	0.0001	1.0E-06
Develop	0.4	1.0E-05	31730	1	0.0056	3.2E-04
no shield	0.6	1.0E-05	128570	1	0.0296	4.2E-04

Total non-shielded time in operation is suppressed to ~30min!

- Radon free room
- film production in small shield

0 day (non-exposed) events was greatly suppressed!

However, exposed events has some constant jump → Unexpected source in shield?

Still 0 day has O(1-10) events while gamma estimation is O(0.1)

chance coincidence of single grain may start to limit

rough estimation of Fog Chance Coincidence

single noise density $[/(10\mu m)^3]$

Chemical elimination of single noises

and the signal survives!

low-radioactive emulsion for ton scale

intrinsic radioactivity

Mechanical properties very different from gelatin New size control method by pH is applied

Carbon ion \rightarrow first confirmation of DM detection potential

Sensitivity upgrade study

The FOOT (FragmentatiOn Of Target) experiment

t0 cm

Charged Particle Therapy: Cancer treatment by radiation using Bragg peak of ion beam (~200 MeV proton etc.) Nuclear fragmentation of the target (and beam) particles is an issue.

case of proton, heavy ions (C,N,O) from the target are too short (~um) but significant contribution for dose

FOOT aims at measuring nuclear fragmentation cross sections to improve Treatment Planning Systems for proton and ion therapy

beam exposure at CNAO (Pavia, Italy)

FOOT / DAMON (Direct meAsureMent of target fragmentatiON)

not inversed kinematics but direct measurement of ~um fragmentations

- \rightarrow NIT as target and detector
- \rightarrow super resolution analysis

problem: induced and fragmented protons were low sensitivity

new development, new sensitization application are ongoing

exposure at Nagoya proton therapy center

from positron to positronium ($e^- + e^+$)

next phase upgrade for AB effect, gravity(WEP) measurement

- 1um order resolution → NIT can achieve (6um pattern is well visible)
- positronium will have half energy of positron for same interference. Further lower energy threshold is needed.
 - stop in the gelatin layer can be problem. Fine grain can reduce that effect?

Unfortunately beam source caused trouble and suspended.

However, a byproduct study: Antiproton Interferometry and the Aharonov-Bohm Effect (AIABE) is organizing now. 10keV positron + NIT (resolution confirmation by single grating)

Environmental Neutron Measurement @LNGS

Neutrons can be significant noise that cannot be removed Direct measurement at each experimental site is important

Demonstration of environment neutron measurement on the surface lab. at LNGS

Radon daughter problems and scale up

non time-dependent tracks induced by Radon daughters were problem.

Neutron measurement also get benefit of radon free room operation and background greatly reduced.

Run 5 (>100g scale) needs operation scale upgrade and now studying.

Conclusion

- Directionality is interesting and promising property for direct dark mater search.
- NIT (Nano imaging tracker) is fine-grained nuclear emulsion which can detects nano-scale track with directionality and even can applicated wide range experiment.
- Many test run were performed at Gran Sasso National Laboratory (LNGS) and we have tried to understand our background. Feeding back the result, new technology have been studied.
- Recently application use of NIT detector is spreading to wide field.