

Probing New Physics with Muons >> Muon g-2 and EDM <<

Kim Siang Khaw Tsung-Dao Lee Institute, SJTU KMI 2025, 2025.03.05

李战道研究所 TSUNG-DAO LEE INSTITUTE

Muon g-2 and EDM

- The muon is an excellent probe for New Physics due to its enhanced sensitivity to quantum loop effects ("heavier electron", longer lifetime than tau)
- Both g-2 and EDM experiments test different fundamental properties of the muon:
 - Muon g-2: Anomalous magnetic moment \rightarrow tests loop corrections from SM and new physics.
 - Muon EDM: Electric dipole moment \rightarrow tests CP violation.

Probing New Physics with Muon g-2

- Can be calculated and measured to high precision (sub-ppm)
- Precision test of SM calculations (at 4-loop QED, EW, and QCD) \bullet

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP, LO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NLO}} = 116\,591\,810(43) \times 10^{-11}$$
.

Powerful discriminant for BSM physics models lacksquare

$$g = \frac{g-2}{2}$$
, $g = 2$ at the tree level

Hadronic

Vacuum

Polarization

Hadronic Light-by-light

 $^{\text{NNLO}} + a_{\mu}^{\text{HLbL}} + a_{\mu}^{\text{HLbL, NLO}}$

Theory Initiative White Paper T. Aoyama et al. Phys. Rept. 887 (2020)

10^{-3} a_{II} 0a₁₁ V contribution on a^{μ} 10⁻⁵ 10⁻⁷ SM 10-11 EW HVP QED HLbL

Muon g-2 Collaboration (181 collaborators, 33 institutes, 7 countries)

We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical Physicists and we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)! Muon g-2 collaboration meeting at Elba, Summer 2019

COLOR DO NOT		
	1.0	
	ALC: NOT	
100 C 100 C 100 C	-	_
the second s		_
-		
-		
Concession of the local division of the loca		
4		

- - Boston
 - Cornell Illinois
 - James Madison
 - Kentucky
 - Massachusetts
 - Michigan
 - Michigan State
 - Mississippi
 - North Central
 - Northern Illinois
 - Regis
 - Virginia
 - Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

– Shanghai Jiao Tong

- Dresden
- Mainz

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

Korea

:11:

- CAPP/IBS
- KAIST

VIZ United Kingdom Lancaster/Cockcroft Liverpool Manchester

μ

Principle of g-2 measurement

into a magnetic storage ring

Muon g-2 superconducting storage ring

- 14 m diameter, 1.45 T
- C-shaped SC magnet

storage region

In-vacuum NMR trolley maps field every ~3 days

2D field maps (~8000 points)

378 fixed NMR probes monitor field during muon storage at 72 locations

Additional corrections

Beam Dynamics Corrections

E-field & vertical motion: Spin precesses slower than in basic equation

Phase changes over each muon fill: Phase acceptance, differential decay, and muon losses

$$C_e + C_p + C_{pa} + C_{dd} + C_{ml}$$

$$1 + B_k + B_q$$

Transient magnetic fields: Quad vibrations and kicker eddy current

Status of the Muon g-2 experiment

Celebrating first beam at MC1 (Summer 2017)

- ~2025:

pushed the red button to shut • Apr 2021: Run-1 Result (2018 data) the beam down (Jul 10, 2023) • Aug 2023: Run-2/3 Result (2019-20 data) Run-4/5/6 Result (2021-23 data) Reached our proposal goal for statistics (~4x Run-1/2/3)

Fermilab director Lia Merminga

Run-1 to Run-2/3 improvements

Analysis Improvements

Running Conditions

- Damaged quad resistors fixed
- Hall/Ring temperature stabilized
- Kicker strength improved

Run-2/3 to Run-4/5/6 improvements

- Stored muon beam exhibits coherent betatron oscillation (CBO)
- Coupled with the calorimeter acceptance, it distorts the time spectrum

- Implemented a RF system to reduce the CBO significantly.
- Run-5/6 data (almost half of the entire data) was taken with the RF system.

Electrostatic Quadrupole + RF

Run-4/5/6 expected improvements

Run-2/3 Result: PRL **131**, 161802 (2023)

TABLE I. Values and uncertainties of the \mathcal{R}'_{μ} terms in Eq. (2), and uncertainties due to the external parameters in Eq. (1) for a_{μ} . Positive C_i increases a_{μ} ; positive B_i decreases a_{μ} [see Eq. (2)]. The ω_a^m uncertainties are decomposed into statistical and systematic contributions. All values are computed with full precision and then rounded to the reported digits.

	Quantity	Correction (ppb)	Uncertainty (ppb)
	ω_a^m (statistical)		201
ω_a	ω_a^m (systematic)		25
	C_e	451	32
	C_p	170	10
BD	\dot{C}_{pa}	-27	13
	\dot{C}_{dd}	-15	17
	C_{ml}	0	3
	$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46
ω_n	B_k	-21	13
<i>P</i>	B_q	-21	20
	$\mu'_{p}(34.7^{\circ})/\mu_{e}$		11
	m_{μ}/m_{e}		22
	$g_e/2$		0
	Total systematic for \mathcal{R}'_{μ}		70 —
	Total external parameters		25
	Total for a_{μ}	622	215

$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_n(T_r)} = \frac{f_{\text{clock}} \,\omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \,\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle (1 + B_k + B_q)}$

- Expected Run-4/5/6 improvements (Estimation for systematics on-going)
- ~100 (in total Runs 1-6), ~x4 stats
- ~x10 reduction of CBO with the RF system (Run-5/6)
- New signal processing algorithm
- New beam-monitoring system (miniSciFi)
- New tracker-based analysis method
- More calibrations + cross-calibrations. Better understanding and handling of magnet drift. More and better measurements
- Surpassed the TDR systematics goal of 100 ppb. And possibly even smaller for Run-4/5/6!

12

Theory vs Experiment for g-2

- Large discrepancy between experiment and WP (2020)
- New results since WP 2020
 - **BMW** (swapping HVP from WP with their value) falls in between WP (2020) and experiment
 - CMD-3 in tension with other e⁺e⁻ machine data (data-driven approach)
- Many parallel efforts are underway to resolve the theoretical ambiguity "The muon g-2 theory puzzle".
- An update is expected in 2025, many more years to resolve this new puzzle
- An independent experiment at J-PARC to provide another experimental input (Suzuki-san)

Muon g-2 from muonium spectroscopy

Ground-state HFS theory **Rydberg constant** fine-structure $R_{\infty} \equiv \alpha^2 m_e c / (2h)$ constant nonrelativistic Fermi energy from $H_{\rm HFS}$ $\nu_{\rm HFS} = \frac{16}{3} (1 + a_{\mu}) \frac{m_e}{m_{\mu}} \frac{R_{\infty} c \alpha^2}{(1 + m_e/m_{\mu})^3} [1 + \delta_{\rm HFS}]$ electron-muon $\mathcal{O}(\alpha)$ correction mass ratio Z-exchange [CODATA 2018 + refs therein] $-65\,\mathrm{Hz}$ $\delta_{\rm HFS} = \delta_{\rm Dirac} + \delta_{\rm rad} + \delta_{\rm rec} + \delta_{\rm rad-rec} + \delta_{\rm weak} + \delta_{\rm had}$ hadronic vacuum pol. $= 237.7(1.5) \,\mathrm{Hz}$ radiative-recoil radiative relativistic known up to $\mathcal{O}[(m_e/m_\mu)\alpha^3]$ Total TH uncertainty $\sim 70 \, \text{Hz} \, (16 \text{ppb})$ known up to $\mathcal{O}(Z\alpha^4)$ recoil (exact) dominanted by (yet) uncalculated QED $\sim 10\,\mathrm{Hz}$ uncertainty including a_e known up to corrections at three-loop order $\mathcal{O}[(m_e/m_\mu)(Z\alpha)^3]$ antimuon charge [Eides-Shelyuto IJMPA 2016] Z = 1 $\sim 60 \, \text{Hz}$ uncertainty

BSM searches (EDM, CPT/LI, DM)

- Muon Electric Dipole Moment (EDM)
 - > The spin precession plane is tilted in the presence of the EDM.
 - Run-1 analysis in review, Run-2/3 analysis in progress
 - > Current limit (BNL): $1.8 \times 10^{-19} \text{ e} \cdot \text{cm}$ \rightarrow Projected limit: $\leq 3 \times 10^{-20} \text{ e} \cdot \text{cm}$

- CPT and Lorentz Invariance Violation
 - $\succ \omega_a$ modulated at the sidereal motion freq.
 - > Run-2/3 analysis in review.
 - ≻ Current limit (BNL): 1.4×10^{-24} GeV → Projected limit (FNAL Run-2/3): $O(10^{-25})$ GeV
- Ultralight Muonic Dark Matter (scalar)
 - $\succ \omega_a$ modulated at the DM Compton frequency.
 - \succ Run-2/3 analysis in progress.

Motivation for EDM searches

symmetry, assuming CPT invariance.

- Standard Model predicts small EDMs for fundamental particles
 - CKM contribution: $d_{\mu}^{CKM} \sim 10^{-42} \text{ e} \cdot \text{cm}$, hadronic long-range effect: $d_{\mu}^{HLR} \sim 10^{-38} \text{ e} \cdot \text{cm}$
 - Current experimental limit $d_{\mu}^{BNL} < 1.8 \times 10^{-19} \text{ e} \cdot \text{cm} (95\% \text{ C. L.})$ PRD 80 (2009) 052008
 - Indirect limit from heavy atom EDM searches $|d_{\mu}| < 2 \times 10^{-20} \,\mathrm{e} \cdot \mathrm{cm}$ PRL 128 (2022) 131803
 - Excellent probes for new physics since it is essentially "background-free"
- Any observed EDM signal is for sure BSM physics!
 - May shed light on the baryon asymmetry in the universe as new sources of CPV are required

• Electric dipole moment (EDM) violates time-reversal symmetry and charge-parity (CP)

PRD 89 (2014) 056006 PRL 125 (2020) 241802

A.D. Sakharov, JETP Lett. 5, 24 (1967)

BSM/EFT models with large EDMs

EFT Analysis

Muon specific 2HDM

Strong motivation to go beyond FNAL/J-PARC goal of 10⁻²¹ e cm!

Radiative muon mass model

17

Going beyond 10⁻²¹ e cm?

- How can we improve the sensitivity of the muon EDM search?
- In the parasitic g-2 approach, the tilt angle is the limiting factor
- For an EDM below 10⁻²¹ e cm, it will be very challenging to measure this small angle $< \mu rad$ (multiple scattering effect + systematic effects like mis-alignment)

Silicon Strip Detector J-PARC Muon g-2/EDM

The "frozen-spin" technique

$$\vec{\omega}_s - \vec{\omega}_c = -\frac{e}{m} \{ aB + (\frac{1}{\gamma^2} - \frac{1}{\gamma^2} - \frac{1}{\gamma^2} \} \}$$

- Developed in 2004 for the muon EDM search PRL 93 (2004) 052001
- Freeze g-2 component by applying a radial E-field of ~ $aBc\beta\gamma^2$ \rightarrow no anomalous precession in the storage plane \rightarrow EDM causes an increasing vertical polarization

19

Principle of the FS-EDM measurement

Up-down asymmetry measured using upper and lower detectors

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2P E_{\rm f} \sqrt{N} \gamma \tau_{\mu} \alpha}$$

- *P* := initial polarization
- $E_{\rm f}$:= Electric field in lab
- \sqrt{N} := number of positrons
- $\tau_{\mu} :=$ lifetime of muon
- := mean decay asymmetry

The PSI muEDM collaboration

~ 30 active members from 6 countries

Principle of the FS-EDM measurement

- Muon enters the solenoid through a SC injection channel
- Magnetic pulse kicker stops the muon's longitudinal motion within a weakly focusing field where it is stored
- Radial electric field 'freezes' the spin so that the precession due to the g-2 is cancelled
- Up-down detectors measure the asymmetry of the muon decay

muEDM Phase I and Phase II

Phase 1:

- Negative helicity (95%)
- p=28 MeV/c
- B=3T
- Flux: O(10⁶ μ⁺/s)
- Storage rate: $O(10^2 \mu^+/s)$
- y=1.04
- Sensitivity/year < $3x10^{-21} \text{ e} \cdot \text{cm}$

 $\sigma_{\mathsf{d}_{\mu}}$

Phase 2:

$$= \frac{\hbar}{2 \,\mathrm{c}\,\beta\,\mathrm{B}\,\alpha\,\mathrm{P}} \frac{1}{\gamma\,\tau\,\sqrt{\mathrm{N}}}$$

- Positive helicity (95%)
- p=125 MeV/c
- B=3T
- Flux: O(10⁸ μ^+/s)
- Storage rate: $O(100 \times 10^3 \,\mu^+/s)$
- y=1.56
- Sensitivity/year < 6x10⁻²³ e·cm

Overview of muEDM Phase I

Cryostat in vacuum

Off-axis Injection tubes

A "tabletop" experiment

Overview of muEDM Phase I

Muon trigger detector

Optimized detector geometry to maximize storage muons

Precise hole drilling using CNC machine at the TDLI muon lab

Fast trigger for kicker coils

Fast electronics design to satisfy stringent timing requirements

Storage pulse kicker

Short trigger delay necessitates internal latency of pulse generator to < 60 ns

First prototype

- - magnetic field, with strong tail suppression

Frozen-spin electrodes

Radial electric field applied by two concentric electrodes enclosing muon orbit

Technical requirements:

- Precise alignment with muon storage plane
- Heat dissipation
- Minimal multiple scattering for positrons
- Suppress Eddy current

Current solution:

- $25 \ \mu m$ Kapton films
- Strip-segmented ~30 nm Al coating
- 2.2 mm pitch

Strip-segmented Alu-Kapton film approach suppresses Eddy current damping, without compromising electric field uniformity.

Positron detectors for EDM signal

- Double barrel SciFi tracker
- Measures longitudinal asymmetry of positron
- Bundles of fibers with good timing and position resolutions
 - transverse and longitudinal fibers

- Photon time and position (longitudinal info on internal barrel)
- Large number of readout channel a challenge
- Considering other possible geometries

Annual beam tests at PS

2019

Characterisation of potential beam lines

2022

Performance test of prototype entrance detector and TPC tracker

2020

Study multiple scattering of e⁺ at low momenta

2021

Characterization of potential electrode material with e⁺ and μ^+

2024

Aligning muon beam with centre axis of injection channel

Positron detection efficiency, muon trigger detector

muEDM Phase-I timeline

2025: Demonstration of critical methods and techniques Preparation of magnetic field - Preparation of kicker field (preliminary) - Preparation of cryogenic injection - Preparation of positron detection Preparation of TPC injection tracker - Preparation of FRES DAQ system 2026: Prepapartion and demonstration of

g-2/muEDM measurement

724		
1.5		
4.		
27		

Design (Concept and technical) **Procurement and manufacturing** Assembly Commissioning

Measurements

	2025				2026							
	Jan	Mar	May	Jul	Sep	Nov	Jan	Mar	May	Jul	Sep	1
Support Rig (detectors & electrodes)												
Magnetic field coils (WF, CC)												
Field mapper (in air)												
Automatic field mapper (in vacuum)						3						
Pulse coil (test load for KIT)												
Pulse coil (in vacuum)												
Kicker PS (beam time 2025)												
Kicker PS KIT (final)			4	>			₿			$\langle \circ \rangle$		
Cryostat for SC channel												Τ
SC channel				2								
Steel channel												
Final Electrodes and HV PS												
												Γ
muon detector upgrades				<u>.</u>								T
muSR postiron detector												T
CHeT positron tracker												
TPC muon injection tracker												
DAQ first set for 2025												Τ
DAQ second batch final												T
Slowcontrol MIDAS						H						T
						4						T
Full muEDM assembly				h. U.								T
												t
Beamtime 2025 (4 weeks)												T
g-2/muEDM measurement (7weeks)											\$	3

Summary and outlook

- Muon g-2 at Fermilab
 - Data-taking completed in 2023, Run-2/3 results published, Run-4/5/6 analysis ongoing. • Met TDR statistical and systematics goal, final uncertainty goal: < 140 ppb by 2025 • BSM searches ongoing: EDM, CPT/LV, Dark Matter

Muon EDM at PSI

- Aiming for sensitivity 10^{-23} e·cm using the frozen-spin technique.
- Phase I progressing well: Beam tests since 2019, first measurement expected by 2026.
- Sensitive to new CP-violation sources, complementary to Muon g-2

quantum corrections (g-2) and CP violation (EDM).

Muon experiments continue to be a powerful probe for new physics - testing

