

Status and prospect of the J-PARC muon g-2/EDM experiment

Kazuhito Suzuki

Kobayashi-Maskawa Institute, Nagoya University On behalf of the J-PARC muon g-2/EDM collaboration

Muon g-2 and EDM

Magnetic dipole moment anomaly (a_{μ})

Electric dipole moment (EDM, d_u)

$$\vec{d} = \eta \left(\frac{e}{2mc}\right) \vec{s}$$

T-violating $d_{\mu} \neq 0$ \rightarrow CP-violation in the lepton sector \rightarrow New Physics.

	Standard model	Experimental searches
d _μ [ecm]	O(10 ⁻⁴²) [1]	< 1.8x10 ⁻¹⁹ (95% C.L.) [2] < 1.9x10 ⁻²⁰ (ThO) [3] < 8.9x10 ⁻²¹ (HfF) [4]

[1] Mass-ratio deduction to d_e of M. Pospelov and A. Ritz, PRD 89, 056006 (2014);
[2] BNL E821, PRD 80, 052008 (2009);
[3] Y. Ema et al., PRL 128, 131803 (2022);
[4] Y. Ema, High Energy News, Vol. 42, No. 2 (2023).

Muon g-2 and EDM

Magnetic dipole moment anomaly (a_{μ}) Electric dipole moment (EDM, d_{μ})

$$\vec{d} = \eta \left(\frac{e}{2mc}\right) \vec{s}$$

T-violating $d_{\mu} \neq 0$ \rightarrow CP-violation in the lepton sector \rightarrow New Physics.

	Standard model	Experimental searches
d _μ [ecm]	O(10 ⁻⁴²) [1]	< 1.8x10 ⁻¹⁹ (95% C.L.) [2] < 1.9x10 ⁻²⁰ (ThO) [3] < 8.9x10 ⁻²¹ (HfF) [4]

[1] Mass-ratio deduction to d_e of M. Pospelov and A. Ritz, PRD 89, 056006 (2014); [2] BNL E821, PRD 80, 052008 (2009); [3] Y. Ema et al., PRL 128, 131803 (2022); [4] Y. Ema, High Energy News, Vol. 42, No. 2 (2023).

- Good probes for new physics.
- Testing with various approaches enhances our understanding of a_{μ} . J-PARC muon g-2/EDM exp.

The 6th KMI International Symposium (KMI2025), KMI, Nagoya University

Experimental principle

Muon momentum

Muon spin

cyclotron motion (ω_c),

- Muon storage in a uniform magnetic field
 - Horizontal "beat" frequency (a_{μ}) ,
 - Vertical oscillation amplitude (d_{μ}),
 - Using decay positron tracking and B-field meas.

Experimental approach

BNL/Fermilab experiments

Conventional muon beam

"In-flight π+" 'Stopped π+" (x,p) phase-space "Decay µ+" "Ultra-slow μ+" Small emittance volume ("emittance") (3.09 GeV/c) Proton Proton is large. (3 GeV/c) Graphite "Surface μ^+ " (3 GeV/c) Graphite (27 MeV/c) $(2.3 \text{ keV/c} \rightarrow 300 \text{ MeV/c})$ \rightarrow Strong E-focusing & "magic y" \rightarrow Weak B-focusing & any γ $\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta = -\frac{e}{m} \left| a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right|$ $\Box \sim -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$ $= \frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$

 \rightarrow Large storage ring

→ Compact storage magnet

J-PARC experiment

Small-emittance muon beam
 Degrader

- Existing MRI technology with an excellent local uniformity,
- High injection efficiency,
- Full-tracking capability with

large acceptance,

 $-a_{\mu}$ and d_{μ} simultaneous meas.

KMI, Nagoya University

J-PARC muon g-2/EDM experiment

• Generation of the "ultra-slow muons" (USMs)

Acceleration: muon linac

• X

• Acceleration of the USMs suppressing the emittance growth

-4-stage linac, from the p-like acceleration to the e-like one.

- Leading to the small-emittance muon beam. Simulation

KMI, Nagoya University

Storage: magnet & injection scheme

N

066.8-8.10

NGMAR

YImi

θ

• A compact storage magnet

M. Abe et. Al., Nuclear Inst. and Methods in Physics Research A890, 51 (2018)

- MRI-type superconducting solenoid (B= 3 T),
- Local B-field uniformity < 0.1 ppm,</p>
- Weak B-focusing: n-index~ (1.5±0.5)x10⁻⁴.
- Developments of the shimming technique and field monitoring system are in progress.

The 6th KMI International Symposium (KM12023) KMI, Nagoya Oniversity

3D spiral injection with vertical kicks

— To inject into the small orbit with high efficiency.

dies are on-

297 keV/c

3.6 pC

82.5 x 10-4

1 fC

25 Hz

3 T

The injection scheme has been successfully

2025/3/5

Time from TRG (us)

- completed the mass production.
- Quarter vane prototypes are being tested under the experimental conditions.
 - ► Static B-field, pulsed kicker B-field, cooling test.

Expected sensitivities

Systematic uncertainties will be much smaller than the statistical ones.

2025/3/5

The 6th KMI International Symposium (KMI2025), KMI, Nagoya University

Achievement in JFY2024

arXiv: 2410.11367 Time-of-flight at MCP Acc. μ Muon RF-acceleration $\begin{array}{cc} \text{On Target} & \text{Pen. } \mu \\ 1e-5 & \psi & \psi \end{array}$ (0→100 keV) Laser - For the first time in the world, RFO On / On-Resonance Accelerated μ^+ RFQ On / Off-Resonance - From 5.7 keV to 100 keV. RFO Off/ On-Resonance Hits [pulse⁻¹ ns⁻¹] 3 50 MLF S2 area (April 2024) 20 squared [mm²] 40 **Muon Cooling** USM source Penetrate u⁺ 2 chamber 30 20 0.8 3000, 2000_{0.4} 15Ŏ0 500 1000 2500 1.2 Time [ns] Transverse emittance (ε) measurements with "Q-scan" method 20 50 50 -20 20 ms_x squared [mm²] ⁴⁰ [x [mm] 40F 'ms_y squared [mm² Muon acceleration 30 30F 20F 20 1.2 -0.6 0.2 0.4 0.6 0.8 -1.1 -0.9 -0.8 -0.7 -0.5 quadrupole current I_{2} [A] quadrupole current I_2 [A] $\varepsilon_x [\pi \text{ mm } \cdot \text{ mrad}]$ $\varepsilon_v [\pi \text{ mm } \cdot \text{ mrad}]$ -20 (Not-shown $= 0.32 \pm 0.03$ (stat.) $+0.05_{-0.02}$ (syst.) $= 0.85 \pm 0.25$ (stat.) $+0.22_{-0.13}$ (syst.) 50 **Diagnostic beam line A** x 1/400 **A** x 1/200 Quad. and bending magnets $\frac{1}{2}$ was 170 (before cooling, simulation). was 130 (before cooling, simulation). The Sth MMI International Symposium (KMI2025), 2025/3/5 13 KMI, Nagoya University

20

. שש

Intended schedule & collaboration

JFY	2024	2025	2026	2027	2028	2029	2030	• Various milestones are set
KEK Budget								in each JFY.
Surface muon		★ Beam at H2	area				6	 Developments and implementations.
Bldg. and facility	Design refin	ement complete ★			Completion	*	takin	– Demonstrations for the
Muon source		*	Ionization tes	st at H2	O de	peration at esign intensity 🕇	ata 1	upstream sections,
LINAC	✓ 100keV acc	eleration@S2	4.3 Me	V@ H2 ★		210	0 MeV 🕇 🧭	- Overall commissioning is
Injection and storage	v el	Completion of	st		trans	port line ready n muon inj	ection 🗙 60 L	 > 100 collaborators push
Storage magnet		*	B-field probe re	ady		Shimming	t Install O g done ★ S	forward the experiment.
Det							Kyoth Hayask	From 10 sound ries, Still growing:
		A CONTRACTOR				R	Juni Tojo	
							Kondo Yasuhiro(JAEA)	
							Shwatz	ommittee artz
2025/3	C.	2			natio	al Symposiu	KIM12025	
					KIVII, Nagov	(HOP THE FOR THE STE	Talkan Suehara	

KMI contributions in 2023-2024 (1)

2025/3/5

• Hosted an international school and a collaboration meeting.

Simon Eidelman School on Muon Dipole Moments and Hadronic Effects

supported by Wilhelm and Else Heraeus Foundation

Sep 2nd-6th 2024 KMI, Nagoya University, Japan

Web = https://indico.kmi.nagoya-u.ac.jp/event/8/ contact = muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Topics & Lecturer

Muon magnetic moment: Experiment Anna Driutti (Pisa) Muon magnetic moment: Theory Martin Hoferichter (Bern) Data input to hadronic vacuum polarization Zhiging Zhang (LICLah) Lattice QCD: Hadronic vacuum polarization Aida El-Khadra (UIUC) Lattice QCD: Light-by-light Harvey Meyer (Mainz) Hadronic light-by-light: Phenomenology Franziska Hagelstein (Mainz) Hadronic light-by-light: Data input Andrzej Kupsc (NCBJ/Uppsala New physics contributions Kei Yamamoto (Hiroshima Tech) Detector technology Paula Collins (CERN) Accelerator technology Mika Masuzawa (KEK) Precision measurements Xing Fan (Northwestern) Monte Carlo generators

Yannick Ulrich (Bern) Scientific organizers

Gilberto Colangelo (Bern), Achim Denig (Maintz), <u>Toru lijima (Naqoya, Chair),</u> <u>Kenji Inami (Naqoya),</u> Jim Libby (Indian Inst. Tech. Madras), Tsutomu Mibe (KEK), Boris Shwartz (BINP)

Local organizers

Seiso Fukumura (Niigata), Toru lijima (Nagoya), Kenji Inami (Nagoya), Masato Kimura (KEK), Tsutomu Mibe (KEK), Yuki Sue (Nagoya), Kazumichi Sumi (Nagoya), Kazuhito Suzuki (Nagoya)

The 29th muon g-2/EDM collaboration meeting

- \overline 📰 11 Dec 2024, 09:00 → 13 Dec 2024, 21:30 Asia/Tokyo
- ES635 (ES Building, Higashiyama Campus, Nagoya university)

Summary

- The J-PARC muon g-2/EDM experiment aims to measure a_{μ} and search for d_{μ} with high sensitivities using the small-emittance muon beam.
 - Very different from the BNL/Fermilab approach,
 - Will enhance our experimental understanding of a_{μ} .
- The experiment is progressing well to launch the experiment in JFY2030.
 - Cooling and world's first acceleration of muons have been demonstrated successfully.
 - The development and implementation of the experimental instruments and facility construction are progressing well.
- *KMI significantly contributes to the experiment as well as to the community.*
 - Young researchers are the driving force.