

Current status and prospects of B-physics

Keisuke Yoshihara

University of Hawaii at Manoa

6th March 2025, KMI2025

Machine Operation Status

SuperKEKB luminosity is steadily increasing:

- 5.1 x 10³⁴ cm⁻²s⁻¹ achieved (World Record).
- **575 fb⁻¹** of data was collected, 495 fb⁻¹ on Y(4S) resonance.

We are working on improving the luminosity (Target: 6 x 10³⁵ cm⁻²s⁻¹):

 "Sudden Beam Loss" is the main issue preventing us from increasing the beam current. It damaged 2% of PXD gates.

In B-Factories, e⁺ and e⁻ collide at 10.58 GeV to make The KEKB/Belle (1ab⁻¹) and PEP-II/BaBar resonance decaying into B⁺B⁻ and B⁰B⁰ in 96% of the (550 fb⁻¹) discovered CP violation in the B Belle and BaBar played a crucial role in establishing la **CP Sonation** of Babar played a crucial role in establishing la the CKM matrix elements.

Integrated luminosity of B factories

Unitarity triangle

CKM matrix

$$\left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) = \left(\begin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(\varrho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^2(1 - \varrho - i\eta) & -A\lambda^2 & 1 \end{array} \right)$$

In B-factory, all parameters can be measured!!

 V_{ij} : i \rightarrow j transition

Vij

qi

qj

A triangle can be defined from CKM parameters by imposing a unitarity requirement. Each parameter can be determined by measurement of **semi-leptonic decay or B-\overline{B} mixing**. Any distortion of the triangle could be a signature of new physics.

Measurement of the CKM Pa

Measurement Precision at Belle II

ch'anners.

- CP eigenstates: K^+K^- , $\pi^+\pi^-$, etc.
- D
- Multi-body (Dalitz analysis): $K_S \pi^+ \pi^-$,

arXiv:1808.10567

Observable	Belle	Belle II (5 ab-1)	Belle II (50 ab-1)
IV _{cb} l incl.	1.8%	1.2%	1.2%
V _{cb} excl.	$3.0_{ex} \pm 1.4_{th}\%$	1.8%	1.4%
V _{ub} incl.	$6.0_{ex} \pm 2.5_{th}\%$	3.4%	3.0%
V _{ub} excl.	$2.5_{ex} \pm 3.0_{th}\%$	2.4%	1.2%
sin2φ ₁ (B->J/ψKs)	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005
ϕ_2 [deg]	85 ± 4 (Belle +BaBar)	2	0.6
$\phi_3 [deg] (B \rightarrow D^{(*)} K^{(*)})$	63 ± 13	4.7	1.5

With 50 ab⁻¹ of data, not only the precision of ϕ_1 , but also $|V_{ub}|$, ϕ_2 , ϕ_3 will be significantly improved. On the other hand, the precision of $|V_{cb}|$ and $|V_{td}|$ is tied to theoretical models and the accuracy of Lattice QCD calculations.

Physics Program

SuperKEKB/Belle II Experiment

Physics objectives

- Precise CKM measurements, rare decay studies,
- GeV-scale dark matter searches (e.g., axion-like particles and dark photons),
- Tau physics and hadron physics.

 A large tracking volume, providing high vertex resolution against high-

- · packground an wireneret
- 4π
- B市間子事報任しかだっ

 ~100% eff. for B meson events
 - Dedicated triggers for dark sector searches
- Grid computing technology for data analysis

CKM Parameter Measurements

Time dependent CP asymmetry

 $S_{CP}(J/\psi K_S) = sin(2\phi_1)$ meas. :

 $b \rightarrow ccs$ has a small unc. on theo. and exp.

 \rightarrow golden mode for ϕ_1

 $B \rightarrow J/\psi K_S(362 \text{ fb}^{-1})$ at Belle II (GFIaT)

 $S_{CP} = 0.724 \pm 0.035 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$ ($S_{PDG} = 0.701 \pm 0.017$)

CP asymmetry can be

etry should be similar to that of if new particles contribute, the

 \rightarrow All consistent with HFLAV values.

aller than that of $B_d^0 \rightarrow \pi^+ \pi^-$.^{7,8} Nevermeasurements should eventually be possitence of a $\cos(\Delta in i)$ form is due to direct i.e., the interference between tree and rams with different CKM phases and onic final-state-interaction phases. In the of neglecting the penguin contributions, $|\xi| = 1$, so that this term disappears. In nis limit the triangles defined in Eqs. (3) ngruent and have identical orientations.

t) term corresponds to the existence of CPto $A_f \cdot \overline{A}_f$ interference via mixing. For the ate, its coefficient is given by

$$\operatorname{Im}\left[e^{-2i\left(\phi_{M}+\phi_{i}\right)}\left[\frac{1-\bar{z}}{1-z}\right]\right],\qquad(8)$$

) and (5) have been used, and

$$\bar{z} \equiv \bar{A}_0 / \bar{A}_2 \,. \tag{9}$$

three angles of the unitarity triangle by α , have $\phi_t = \gamma$, $\phi_{M_d} = \beta$, and $\beta + \gamma = \pi - \alpha$:

$$\operatorname{m}\left[e^{2i\alpha}\left[\frac{1-\bar{z}}{1-z}\right]\right].$$
 (10)

[A] [Ly. (2)]. Simple geometrical considerations af low one to obtain $|A_0|$ and $\cos\theta$ from the triangle, where θ is the angle between A_0 and A_2 . Note t θ cannot be determined, which means that, altho NEW magnitude of θ is known, the sign is not. The poince is that the triangle can be up or down; i.e., it can be reflected through the A^{+0} axis. Therefore z is determined up to a twofold ambiguity in the sign of its phase. Similarly, \bar{z} can be determined from the triangle in Fig. 2(b) [corresponding to Eq. (4)], but there is again a twofold ambiguity in its phase. We find from Eq. (10),

$$\operatorname{Im}\xi_{+-} = \operatorname{Im}\left(e^{2i\alpha}\left[\frac{1-|\bar{z}|e^{\pm i\bar{\theta}}}{1-|z|e^{\pm i\theta}}\right]\right),\tag{11}$$

(Ь)

 $\frac{1}{\sqrt{2}} \overline{A}^{+-}$

 $1/\sqrt{2}A$

(a)

 $\frac{1}{\sqrt{2}} A^{+}$

A2 \overline{A}_2 FIGS 2^{f} Complex triangles of (a) Eq. (3) and (b) Eq. (4).

A°°

Α.

A^{+ °}

$$\pi^0\pi^0:A^{00}=2A_2+A_0$$

 $\pi^+\pi^0:A^{+-}=3A_2-A_0$

. o6

 $\bar{A}^{-0}A^{+0}, \bar{A}^{-0}$

 $\sqrt{2}A^{+-} = A^{00} + A^{+-}$

- 12.19624
- B→ ρρ decay is characterized by three helicity states (ongitudinal H₀ and transverse H and H). Longitudinal polarization (H, 2/Σ|H|2) is an observable in angular analysis.
 Simultaneous fit in kinematic variables to extract branching fraction,
 - longitudinal polarization fraction (f_L), charge asymmetry (A_{cp})

- Suppress continuum with NNet and tag the flavor to measure the CP asymmetry:
 - $A_{CP} = -0.26 \pm 0.21$, $S_{CP} = -0.02 \pm 0.13$
- Obtain a 10% improvement on WA for ϕ_2 when including this new result:

$$\Phi_2 = (92.6 + 4.5 - 4.8)$$

—— Long. signal	Self-crossfeed	BB	XXXX ΤΤ	Data		
Trans. signal	····· Peaking backgrounds	qq	— Total			
					100	

$\left|V_{ub}\right|$ and $\left|V_{cb}\right|$ measurement

Semi-leptonic B decays are used to extract the CKM parameters $|V_{ub}|$ and $|V_{cb}|$.

- $B \rightarrow \pi \ell \nu$ and $B \rightarrow D \ell \nu$ are golden modes for $|V_{ub}|$ and $|V_{cb}|$ measurements.
- There exists a longstanding discrepancy (~3.3o) between exclusive and inclusive measurements.
- Belle II can precisely measure both modes.

B Meson Tagging

Reconstruct Opposite-Side B Meson (Btag)

(Since B mesons are produced in paris, they can be identified with high efficiency)

- Presence of B_{tag} allows analysis in three modes:
 - Hadronic, semi-leptonic, and untagged
 - Reconstructing B_{tag} requires a lot of data (low efficiency)
 - B_{tag} is crucial when neutrinos are present on the signal side.
- Al/ML approach significantly improves reconstruction efficiency compared to the Belle era.

$|V_{cb}|$ measurement : $B \rightarrow D^{(*)} \ell \nu$ (190 fb⁻¹)

- Untagged analysis was performed at Belle II
- Reconstructing low momentum π from D* is challen
- Simultaneous fit using the angle $cos\theta$ and mass diffinition in the B and $D^*\ell(=Y)$ system.

in $D^* \rightarrow D^0 (\rightarrow K\pi)\pi$ in $\Delta M (= M(D^*) - M$

Phys. Rev. D 108, 092013 (2023)

• Non-perturbative form factor models: BGL, CLN

 $IV_{cb}I_{BGL} = (40.6 \pm 0.3(\text{stat}) \pm 1.0(\text{syst}) \pm 0.6(\text{tho})) \times 10^{-3}$ $IV_{cb}I_{CLN} = (40.1 \pm 0.3(\text{stat}) \pm 0.9(\text{syst}) \pm 0.6(\text{tho})) \times 10^{-3}$

Latest Status: $|V_{ub}|$ and $|V_{cb}|$

arXiv2301.07529 arXiv:2407.17403

New exclusive measurement (tagged) from Belle (711 fb⁻¹) exploiting full differential information from $B \rightarrow D^* l v$ decays for the first time: $|V_{cb}| = (40.6 \pm 0.9) \times 10^{-3}$

New exclusive results from Belle II (untagged)

B→π/ν (362 fb⁻¹):

 $|V_{ub}| = (3.73 \pm 0.16) \times 10^{-3}$

• $B \rightarrow \rho l v (362 \text{ fb}^{-1})$: $|V_{ub}| = (3.19 \pm 0.33) \times 10^{-3}$

Pion modes reduce the tension,while large uncertainty with ρ.Theory inputs are key.

Lepton Flavor Universality (LFU)

- In the SM, the coupling constants for weak interactions should be independent of the charged lepton flavor (e, μ, τ).
- Measurement of $R(D^{(*)})$ in $b \rightarrow c\ell v$ transitions show deviations from the SM.
- Such anomalies are crucial for determining new physics directions, requiring further validation.
- Belle II will perform independent and complementary tests of LFU in various final states.

sen

We

ang

the

det

try

0.1 10

$B \rightarrow D^{(*)} \tau \nu (190 \, fb^{-1})$

- Since B meson decays via W in the SM, the BF is large O (1) %
- This is a decay of 3rd gen. quark to 3rd gen. lepton
 - Large coupling to heavy particle (e.g. charged Higgs)
 - Large coupling to 3rd gen. particles (e.g. LQ or Z' model)
- At least 3 neutrino in the final state → Flavor tagging is a key

Phys. Rev. D 110, 072020 (2024)

• Unc. can be suppressed by taking a ratio (LFU)

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)}$$

Latest Status: R(D*) vs R(D)

$b \rightarrow s \ell^+ \ell^-$

- Flavor changing neutral current (FCNC) $b \rightarrow s$ (d) decay proceeds with a loop diagram. Hence it is suppressed in the SM.
 - Enhancement of new physics contribution (e.g. SUSY, Z', LQ model etc)

- $b \rightarrow s \ell^+ \ell^-$ is experimentally a clean signature.
- Unc. can be suppressed by taking a ratio:

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$$

In Belle II, in addition to R(K*), an inclusive measurement of R(Xs) is also possible.
 Flat sensitivity over q².

Long-Lived Particle Search (190 fb⁻¹)

- First LLP Search at Belle II
 - In FCNC b→s, some models predict the production of long-lived (pseudo) scalar S
 - $B^{\pm} \rightarrow K^{\pm}S$ or, $B^0 \rightarrow K^*(892)S$

where $K^*(892) \rightarrow K^+\pi^-$,

 $S \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, K^+K^-$

Peak search in the mass distribution of S

Hadronic Vacuum Polarization

- **5.1** σ deviation from the SM in $(g-2)_{\mu}$
 - ▶ new physics? (e.g. SUSY, LQ, ALP, ...)
- Dominant theo. unc. arises from QCD term (HVP term)

HVP: Hadronic Vacuum Polarization

$$a_{\mu} = rac{g-2}{2} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD}$$

- Large diff. in measured xsec btw BaBar and KLOE
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section at Belle II
 - Energy of hadrons scales with ISR γ recoil energy
 - Measured xsec is 6.5% higher than BABAR, pushing 3.0x10⁻³ higher in a_µ

<u> Phys. Rev. D 110, 112005 (2024)</u>

SBL Investigation

Sudden Beam Loss (SBL)

A significant beam loss at high beam current operation resulted in severe damage on a collimator or the vertex detector. Our abort system is not fast enough to protect such a sudden beam loss. \rightarrow A limitation toward higher beam current

Fast LM system for beam diagnostic

 To pinpoint the location of the initial beam loss, 15 loss monitors (CsI+PMT, EMT) have been installed around collimator locations (i.e. smallest aperture in the ring) since the summer of 2021.

 White Rabbit (WR) time synchronization system, developed by CERN, has been employed.

Advanced Beam Abort System

In 2022, most SBL events triggered abort requests from CLAWS (IR). The timing of these aborts can be improved by:

Optimizing sensor placement
 Reducing transmission path
 length (bypassing CCB)

In 2022, we demonstrated that optimizing sensor placement at D06V1 allowed the abort signal to be issued 1-2 abort gaps earlier.

SBL Investigation (After Summer 2024)

- Upon opening the beam pipe in the D10 L02/L03 sections, black stains were discovered.
- These stains were identified as burnt silicon, most likely originating from the degradation of vacuum sealants (VACSEAL).
- After cleaning the affected piples (D10 L02/L03), SBL was completely eliminated in that section.
- However SBL continues to occur in the D04 section, necessitating further clearning/monitoring.

Summary

(4S)

- SuperKEKB/Belle II is a new generation B-factory having unique capabilities for new physics search.
- Machine operation going well so far and 575 fb⁻¹ has been collected.
 - LER/HER: 1632/1259 mA
 - n. bunch: 2346 bunches (2-bucket spacing)
 - Peak luminosity: 5.1 x 10³⁴ cm⁻²s⁻¹

Thank you!