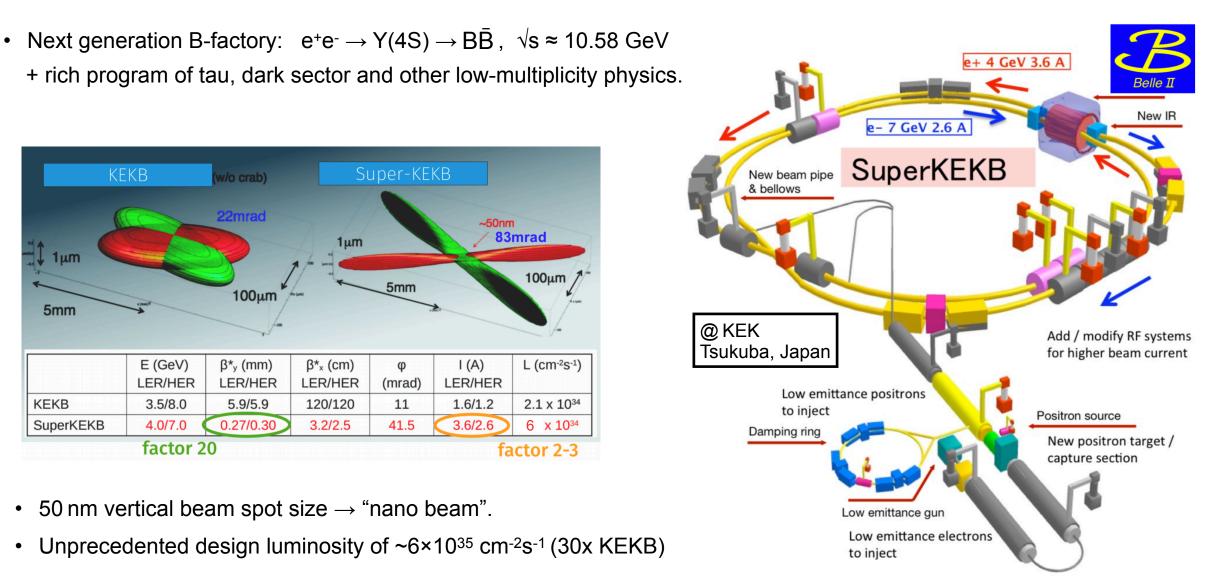
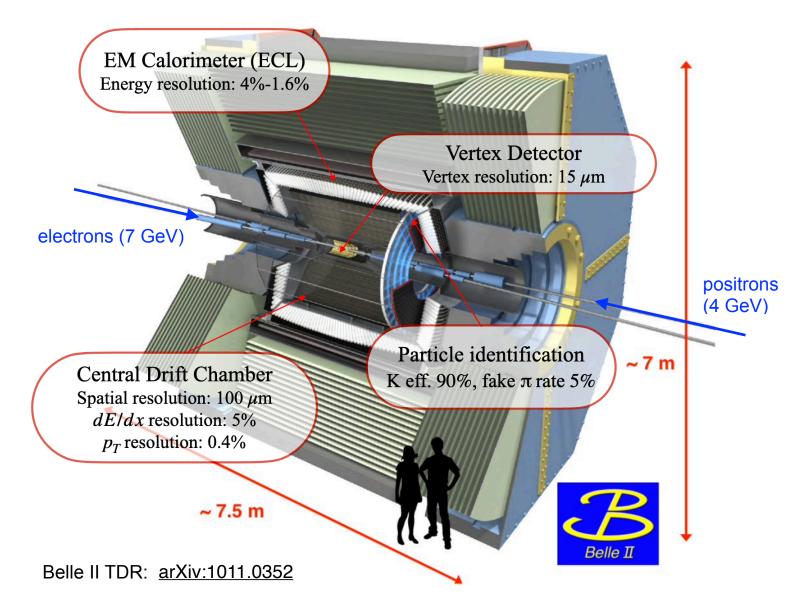
Petar Rados (KMI, Nagoya University) on behalf of the Belle II Collaboration

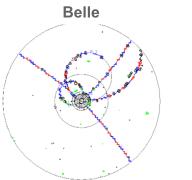
KMI2025 Nagoya, Japan 6 March 2025

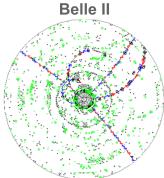
Kobayashi-Maskawa Institute for the Origin of Particles and the Universe




SuperKEKB Accelerator

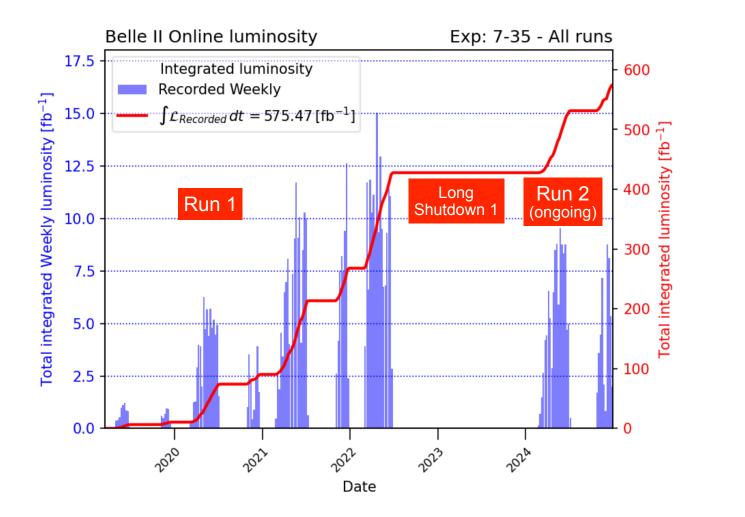
- + rich program of tau, dark sector and other low-multiplicity physics. Super-KEKB **KEKB** w/o crab) 22mrad ~50nm 83mrad 1µm 1µm 100µm 5mm 100µm 5mm E (GeV) β_{v}^{*} (mm) β*_x (cm) I (A) L (cm⁻²s⁻¹) φ LER/HER LER/HER LER/HER LER/HER (mrad) KEKB 3.5/8.0 5.9/5.9 120/120 11 1.6/1.2 2.1×10^{34} **SuperKEKB** 4.0/7.0 0.27/0.30 3.2/2.5 41.5 3.6/2.6 6 x 10³⁴ factor 20 factor 2-3
- 50 nm vertical beam spot size \rightarrow "nano beam". •
- Unprecedented design luminosity of $\sim 6 \times 10^{35}$ cm⁻²s⁻¹ (30x KEKB) •





Belle II Detector

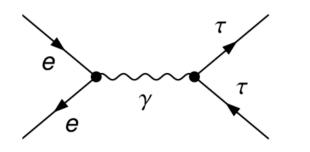
 Consequently Belle II has higher beam backgrounds and event rates.



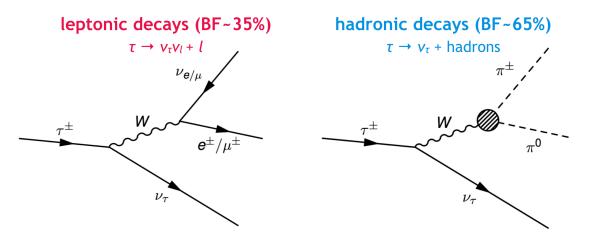
- Major upgrade of the Belle detector:
 - 2-layer Pixel Detector (PXD) with first layer at 1.4cm, significantly improves vertexing.
 - 4-layer Silicon Vertex Detector (SVD) with larger acceptance.
 - Central Drift Chamber (CDC) with larger outer radius.
 - Improved particle ID: TOP + new ARICH (K/π separation).
 - Improved trigger, and faster electronics in general.

Performance to date

Peak instantaneous luminosity 5.1 x 10³⁴ cm⁻² s⁻¹ (new world record in 2024)

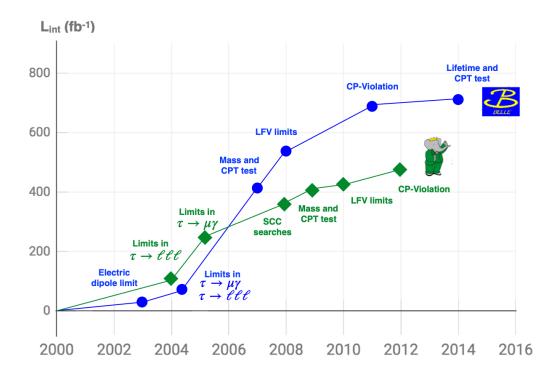

Integrated luminosity: 573 fb-1			
495 fb ⁻¹ recorded at $\Upsilon(4S)$			
59 fb ⁻¹ at 60 MeV below $\Upsilon(4S)$, for background studies			
19 fb ⁻¹ at 10.75 GeV, for exotic hadron searches			

Aiming to collect **50 ab**⁻¹ over the next ~10 years (x50 Belle)



Belle II as a au factory

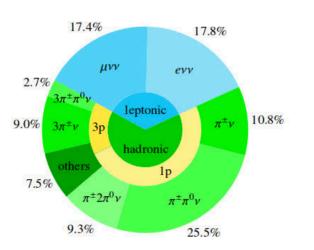
• The τ is the charged lepton of the third generation. They are produced in pairs.



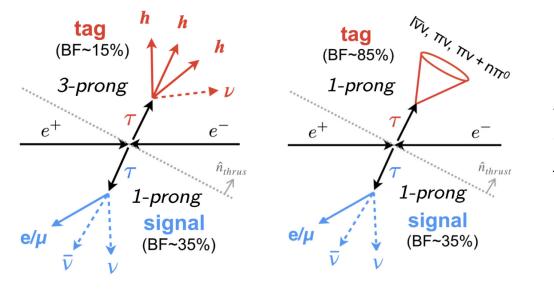
• Only lepton massive enough to decay into hadrons (>200 hadronic channels).

• B-factories are also *τ*-factories

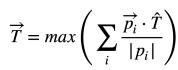
 $\sigma(e^+e^-\rightarrow \Upsilon(4s)) = 1.05 \text{ nb}$ vs. $\sigma(e^+e^-\rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$


 Over its lifetime Belle II will deliver an enormous sample of ~4.6×10¹⁰ τ-pair events

A unique environment to study τ physics with high precision!



Tau Physics at Belle II


 Each τ will subsequently decay into final states containing mostly one (1-prong) or three (3-prong) charged particles.

• We mainly study **3x1 prong** and **1x1 prong** topologies.

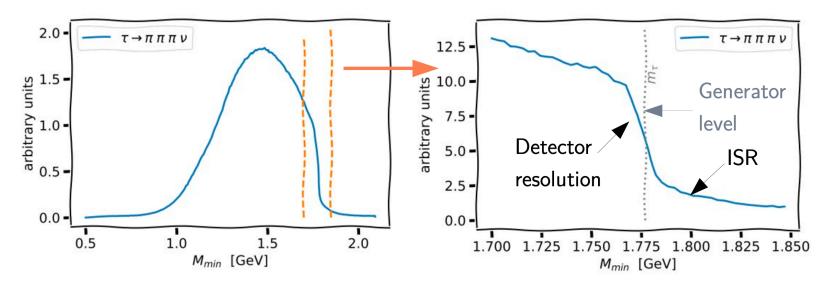
Split event into two hemispheres across thrust axis

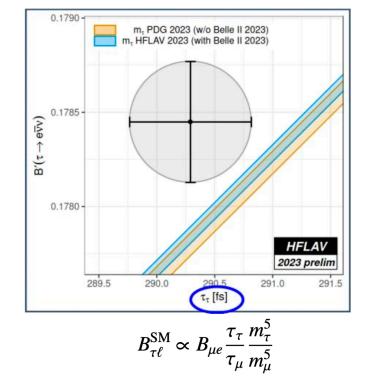
 Tau physics program follows two strategies:

(1) Precision SM measurements. Indirect hints of NP in SM deviations.

- τ properties (mass, lifetime), couplings (e-μ universality, V_{us}), CP violation, etc
- Often sub-% measurements: systematics are usually the dominant error source.

- (2) Search for rare or forbidden processes. Direct observation would be unambiguous sign of NP.
- Mostly Lepton Flavor Violating (LFV) τ decays.
 Often very little to no background.
- ♦ Need to be smart to beat limits from Belle with ½ data.
 - Requires high reconstruction efficiencies
 - Machine learning techniques, inclusive tagging

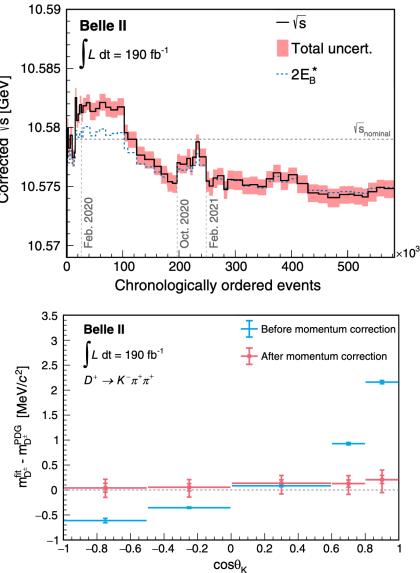

Tau Mass


 Lepton masses (and lifetimes) are fundamental parameters of the SM

For taus the uncertainties are by far the largest!

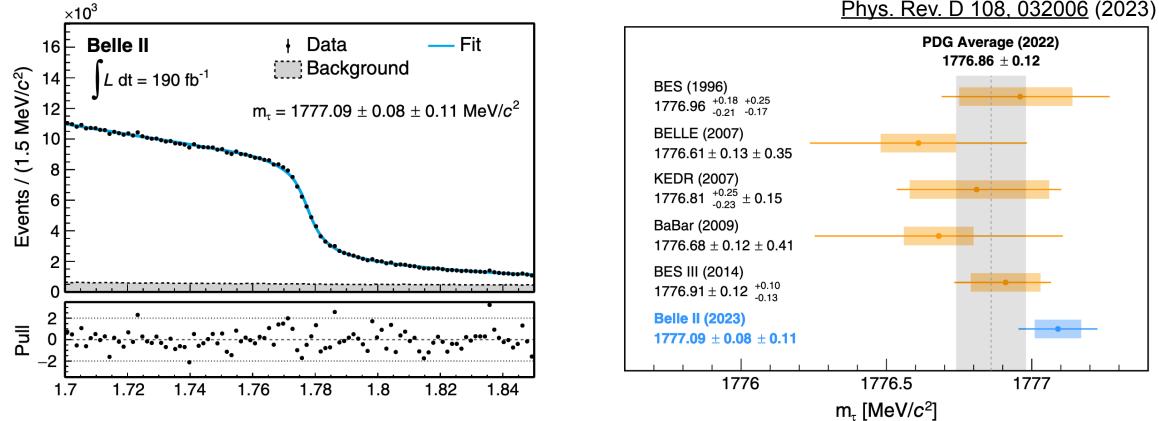
	electron	muon	tau
δm/m	6×10 ⁻⁹	2×10 ⁻⁸	7×10 ⁻⁵ †
δτ/τ	n/a	1×10 ⁻⁶	2×10 ⁻³ † prior to Belle II

- Reconstruct 3x1 prong topology with inclusive tag and $\tau_{signal} \rightarrow 3\pi\nu$
- Access m_{τ} via pseudo-mass M_{min} : $\sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 E_{3\pi}^*)(E_{3\pi}^* P_{3\pi}^*)} \le M_{\tau}$
- Fit to end point distribution with an empirical function within 1.7-1.85 GeV



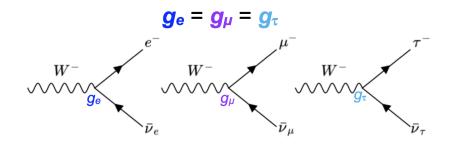
- Sharp threshold behaviour near m_{τ}
- Smeared edge due to detector resolution effects and larger tails because of ISR

Tau Mass: precision challenge

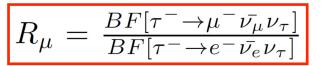

beam energies and tracking: M_{\min}	$=\sqrt{M_{3\pi}^2+2(n_{3\pi}^2+2(n_{3\pi}^2+2))}$	\sqrt{s}	$E/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*) \le M_{\tau}$	_
Source	$\frac{\text{Uncertainty}}{[\text{MeV}/c^2]}$			Corrected VS [GeV]
Knowledge of the colliding beams:			Beam energy calibration	ctec
Beam energy correction	0.07		with B-meson hadronic decays	orre
Boost vector	≤ 0.01			ŏ
Reconstruction of charged particles:			method and Y(4S) lineshape	
Charged particle momentum correction	0.06		measurement to get √s	
Detector misalignment	0.03			
Fitting procedure:				
Estimator bias	0.03	\backslash		
Choice of the fit function	0.02			
Mass dependence of the bias	≤ 0.01			
Imperfections of the simulation:			Momentum scale factor	
Detector material budget	0.03		cures the bias due to imperfect B-	
Modeling of ISR and FSR	0.02			
Momentum resolution	≤ 0.01	field: extract corrections dependent		
Neutral particle reconstruction efficiency		on $\cos \Theta_{_{track}}$ by comparing $D^{_0} \rightarrow K\pi$		
Tracking efficiency correction	≤ 0.01		brack.	
Trigger efficiency	≤ 0.01		mass peak w.r.t PDG mass.	
Background processes	≤ 0.01			
Total	0.11			

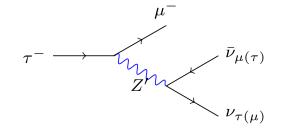
Tau Mass Result

- Analysis performed on part of the on-resonance Run 1 data (190 fb⁻¹)
- Achieve world's most precise measurement: $m_{\tau} = 1777.09 \pm 0.08_{stat} \pm 0.11_{sys} MeV/c^2$
 - \Rightarrow Demonstration of the high precision capability of Belle II!

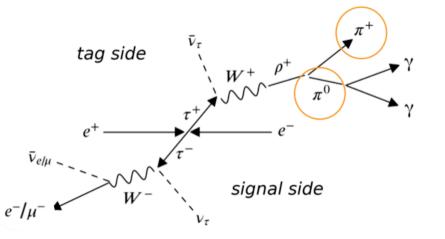


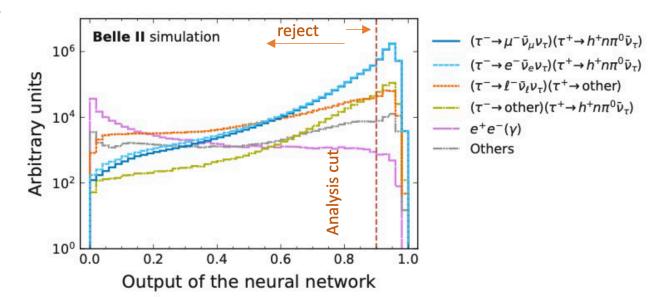
Phys. Rev. D 108, 032006 (2023)



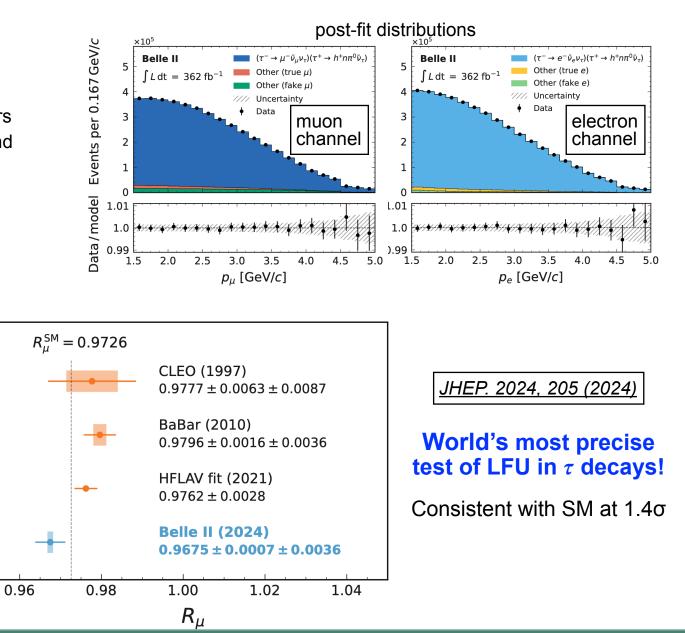

Lepton Flavour Universality

 LFU ⇒ couplings of leptons to W bosons is flavour independent




- Precision test of of e-μ universality in τ decays
- New Physics could enter in many ways, e.g. LFV neutral current. *Phys. Lett. B* 2016 09 046)

- Belle II analysis on the full on-resonance Run 1 data (362 fb⁻¹). Considering the 1x1 prong topology with ρ tag.
- Restrict to barrel region, 1.5 < p < 5 GeV (\ PID systematics).
- Rectangular cuts + <u>neural networks</u> to remove backgrounds.
- Achieve 94% purity with 9.6% signal efficiency (e+µ)

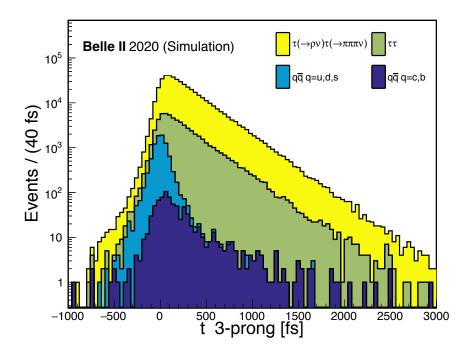


Lepton Flavour Universality

- Measure R_µ with a binned maximum likelihood fit using the *pyhf* library
 OSS 6 (2021) 2823
 - 21 bins over lepton momentum from 1.5 5 GeV
 - systematics included with (constrained) nuisance parameters
 - 3 templates for the µ & e channels (signal decay, background w/wo correct particle on signal side)
- Huge effort within Belle II to get lepton ID efficiency and fake-rate systematics under control.

Source	Uncertainty $[\%]$	
Charged-particle identification:	0.32	
Electron identification	0.22	
Muon misidentification	0.19	
Electron misidentification	0.12	
Muon identification	0.05	
Imperfections of the simulation:	0.14	
Trigger	0.10	
Size of the simulated samples	0.06	
Luminosity	0.01	
Total	0.37	

P. Rados


 $(IP_z^{\text{rec}} - IP_z^{\text{nom}}) \quad [\mu m]$

ge: tau lifetime

3-prong

- Can relate proper decay time to flight distance and momentum in lab frame: $t = \frac{l_{\tau}}{\beta \gamma c} =$
- Reconstruct 3-prong vertex and estimate p_{τ} using decay products
 - Exploit the tiny beam spot size near the IP \Rightarrow estimate production vertex as the intersection of p-direction with vertical plane of IP

This method is only possible at Belle II!

 Current world-best measurement from Belle (711 fb⁻¹) using <u>3x3</u> prong topology.

measure these!

 τ_{τ} = 290.1 ± 0.53 (stat) ± 0.33 (sys) fs Phys. Rev. Lett. 112, 031801

 $\overrightarrow{V}_{3\pi}$

 Belle II has 5x higher efficiency (<u>1x3</u> prong), and 2x better proper decay time resolution (where we have PXD)

 IP_{u}

Belle II can deliver a world-leading measurement with the current data

 3π

 $\sigma_y^* < 1 \mu \mathrm{m}$

 \vec{p}_{τ}

, au_{tag}

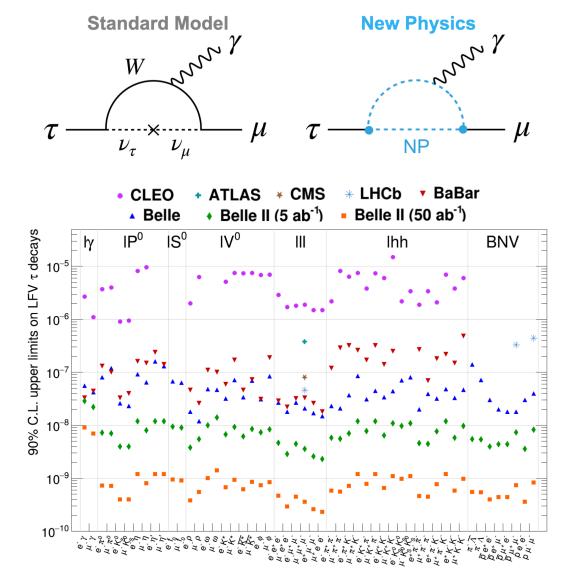
proc

Search for LFV τ decays

• In the SM, charged LFV decays via neutrino oscillation are highly suppressed and immeasurably small:

$$Br(\ell_1 \to \ell_2 \gamma)_{SM} \propto \left(\frac{\delta m_\nu^2}{m_W^2}\right)^2 \sim 10^{-54} \cdot 10^{-49}$$

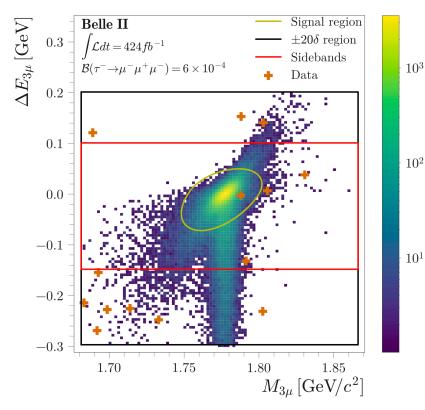
- ⇒ Observation would be a clear signature of NP!
- μ → e: stringent bounds exist from MEG experiment
 τ → μ/e: weaker bounds mainly from Belle & BABAR.
- Wide variety of τ LFV decay modes to study
 - Radiative
 - ative $\tau \rightarrow \ell \gamma$ onic. $\tau \rightarrow \ell \ell \ell$
 - Leptonic.
 - Semileptonic. $\tau \rightarrow \ell h(h)$
 - "Invisible" $\tau \to \ell \alpha$

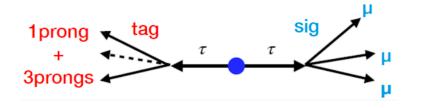

Golden channels: $\tau \rightarrow \mu \mu \mu$, $\tau \rightarrow \mu \gamma$

SL modes can test couplings b/w quarks and leptons, and better discriminate b/w NP models.

Invisible largely unconstrained.

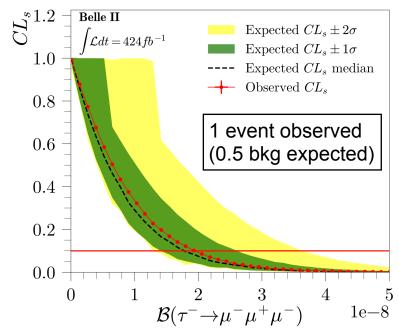
arXiv:2203.14919


Extrapolating from Belle results (5, 50 ab⁻¹): Belle II will push the current bounds forward by at least one order of magnitude!



LFV $\tau \rightarrow 3\mu$

- One of the "golden channels" for τ LFV. Neutrinoless 3-body decay (3μ).
- Analysis strategy:
 - inclusive tag (3x1 & 3x3 topologies)
 - background rejection using BDT
 - ⇒ signal efficiency 2.7x Belle

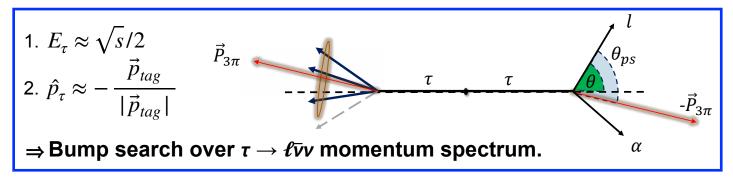

• Extract signal yield in 2D plane:

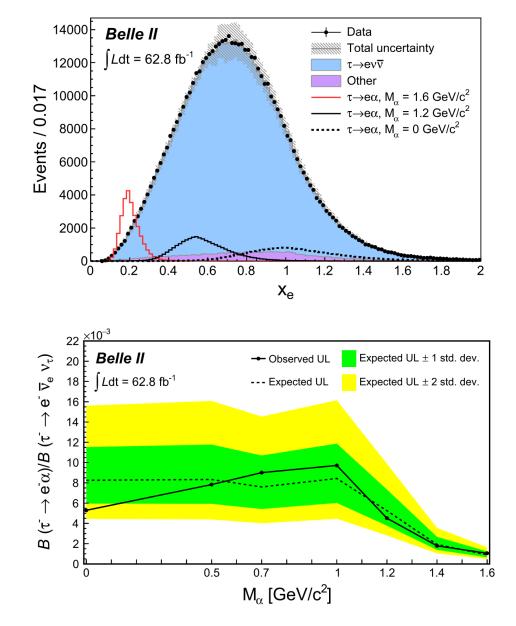
$$M_{3\mu} = \sqrt{E_{3\mu}^2 - P_{3\mu}^2} \Delta E_{3\mu} = E_{3\mu}^{CM} - E_{\text{beam}}^{CM}$$

- For signal:
 - $\Delta E_{3\mu}$ close to zero, and $M_{3\mu}$ close to τ mass.
 - Tails due to initial and final state radiation.

Belle II with 424 fb⁻¹ set world's best upper limits!

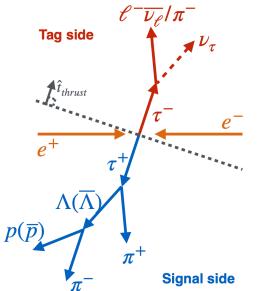
JHEP09(2024)062


	UL at 90% C.L. on $\mathcal{B}(\tau \to 3\mu)$
ATLAS	$3.8 \times 10^{-7} \ (\mathcal{L} = 20.3 \ \text{fb}^{-1})$
LHCb	$4.6 \times 10^{-8} (\mathcal{L} = 3.0 \text{fb}^{-1})$
CMS	$2.9 \times 10^{-8} (\mathcal{L} = 131 \text{fb}^{-1})$
Belle	$2.1 \times 10^{-8} (\mathcal{L} = 782 \text{ fb}^{-1})$
BaBar	$3.3 \times 10^{-8} (\mathcal{L} = 486 \text{fb}^{-1})$
Belle II	$1.9 \times 10^{-8} (\mathcal{L} = 424 \text{ fb}^{-1})$

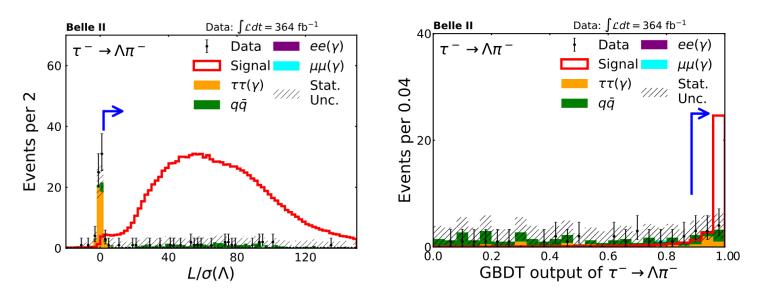

Simulated signal events

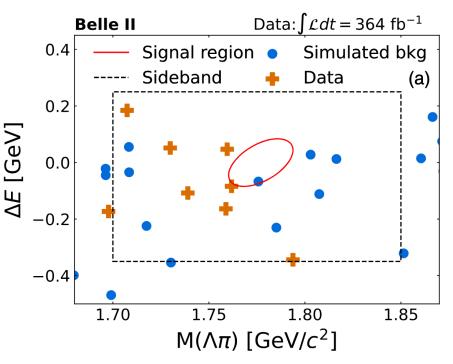
LFV $au ightarrow \mathscr{C} lpha$ (invisible)

- Search for LFV $\tau^- \rightarrow \ell^- \alpha$ ($\ell = e, \mu$) where α is an invisible particle.
- α can enter from NP models such as light ALP and many more.
- Cut-based analysis to suppress reducible bkgs ($q\bar{q}, \ell\ell\gamma$, 2-photon) and also correctly-tagged $\tau^+\tau^-$ with misidentified signal (e.g $\tau \to \pi\nu$).
- High purity: 96(e)-92(μ)% with ϵ = 9-17% depending on m_{α}.
- Cannot boost to the signal τ rest frame due to undetected neutrinos.
- Approximate using *pseudo-rest* frame with two assumptions



Belle II with 62.8 fb⁻¹ set world's best upper limits,2.2 - 14x better than previous!PRL 130, 181803 (2023)





LFV $\tau \to \Lambda(\bar{\Lambda})\pi$

- These decays violate lepton number and baryon number conservation.
 BNV key ingredient to explain asymmetry of matter.
- $\Lambda(\bar{\Lambda})$ reconstructed from $p(\bar{p})$ and π .
- Background suppression: Pre-selection (Λ flight distance most discriminate). Followed by gradient BDT.
- $\epsilon_{sig} \sim 9.5\%$ (9.9%) for $\tau \to \Lambda(\bar{\Lambda})\pi$
- Look for an excess within ellipses (ΔE vs mass) $\Delta E = E_{\Lambda\pi}^{CM} - \sqrt{s}/2 \qquad M(\Lambda\pi) = \sqrt{E_{\Lambda\pi}^2 - P_{\Lambda\pi}^2}$

• No observed events in 364 fb⁻¹. New Belle II limits at 90% CL are: $B(\tau \to \Lambda \pi) < 4.7 \times 10^{-8}$ $B(\tau \to \overline{\Lambda} \pi) < 4.3 \times 10^{-8}$

World's best limits! Phys. Rev. D 110 (2024)112003

Summary

- After big efforts to control systematic uncertainties, Belle II is providing world-leading precision measurements in the tau sector:
 - τ mass measurement and test of e-µ universality.
- High signal reconstruction efficiency with MVA techniques and inclusive tagging has enabled Belle II to already deliver world-leading limits on LFV τ decays:
 - $\tau \to \mu \mu \mu, \tau \to \ell \alpha$, and $\tau \to \Lambda(\bar{\Lambda})\pi$ shown today
 - + more (e.g $\tau \to e2\ell, \tau \to K_s\ell$)
- Many more results are in the pipeline:
 - Another LFV "golden channel": $\tau \rightarrow \mu \gamma$
 - Next precision challenge: τ lifetime
 - Rate and angular CP asymmetries in $\tau \to K_s \pi \nu$, V_{us} measurement, absolute BFs
 - and much more

⇒ Exciting times ahead!

