A new result of neutron lifetime measurement with cold neutron beam at J-PARC

Kenji MISHIMA (KMI FlaP, Nagoya university) <u>kmishima@kmi.nagoya-u.ac.jp</u> On behalf of J-PARC neutron lifetime collaboration

The 6th KMI International Symposium (KMI2025) Mar 6th , 2025, Nagoya University, Sakata-Hirata Hall

Neutron lifetime

Test of standard model

- V_{ud} of the Cabibbo-Kobayashi-Maskawa (CKM) matrax can be calculated with:
 - Neutron lifetime (τ_n)
 - Axis/vector coupling constant $\lambda \equiv G_A/G_V$

$$|V_{ud}|^2 = \frac{(4905.7 \pm 1.7) \text{ sec}}{\tau_n (1+3\lambda^2)}$$

→ Verification of the unitarity of the CKM matrix

- An input parameters for the Big Bang Nucleosynthesis (BBN)
 - Abundance of light elements in early universe can be calculated with:
 - Baryon-to-photon ratio
 - Nuclear cross sections
 - Neutron lifetime

• The neutron lifetime is an important parameter for physics

Methods to measure neutron lifetime

Beam method

Credit: The J-PARC neutron lifetime collaboration

Counts beta decay protons or electrons from neutron beam and estimate the beta decay event fraction with injected neutron flux

Storage method

Credit: The J-PARC neutron lifetime collaboration

Confines ultra-cold neutrons into strage and then counts survived neutrons as a function of confinement time

Space-based method

Credit: Johns Hopkins Applied Physics Laboratory, USA

Counts neutrons that are produced by interactions between cosmic rays and atmospheric and/or surface material of a planet at spacecraft altitude

UCNτ experiment

 The most accurate experiment have done in Los Alamos in 2021.
 F. M. Gonzalez *et al* (UCN τ Collaboration), Phys. Rev. Lett. 127, 162501 (2021)

 $\tau_n = 877.7 \pm 0.28_{stat-1.06_{syst}}^{+0.22} s_{stat-1.06_{syst}}^{+0.22} s_{stat-1.06_{syst}}^{+0.2$

Storing UCNs in magnetic bottle, and detecting with scintillation detector.

Beam method NIST experiment by proton counting

- Monochromatic beam is transported to the magnetic trap. Neutron flux is monitored by a well calibrated ⁶Li/SSD detector.
- Protons from the neutron decays captured in the magnetic trap with electrodes. Stored protons are released and detected by a SSD with thin surface layer.

 $\tau_n = 887.7 \pm 1.2 [stat.] \pm 1.9 [syst.] s = 887.7 \pm 2.3 [combined] s$

A. T. Yue et al., "Improved determination of the neutron lifetime." Physical review letters 111.22 (2013): 222501. J. Nico et al., "Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam." Physical Review C 71.5 (2005): 055502.

Neutron lifetime puzzle

- > Measured neutron lifetime values with beam method and storage method show significant discrepancy (more than 4.6σ)
 - Experimental uncertainties that were not taken into account? (Phys. Rev. D 103, 074010)
 - New physics?
 - Dark decay? (Mod. Phys. Lett. A 35, 2030019 (2020))
 - Soft scattering with dark matter? (Phys. Rev. D 103, 035014)
 - Mirror neutron oscillation? (EPJ C 79: 484 (2019))

📫 v

We try to solve the puzzle with a new method

Neutron Lifetime experiment using pulsed neutron at J-PARC

K. Mishima¹, Y. Fuwa², T. Hasegawa¹, T. Hoshino⁴,
R. Hosokawa⁴, G. Ichikawa³, S. Ieki⁵, T. Ino³,
Y. Iwashita⁶, M. Kitaguchi¹, S. Makise⁴,
S. Matsuzaki⁴, T. Mogi⁷, K. Morikawa¹,
N. Nagakura⁷, H. Okabe¹, H. Otono⁴,
Y. Seki⁵, D. Sekiba⁸, T. Shima⁹, H. E. Shimizu¹⁰,
H. M. Shimizu¹, N. Sumi³, H. Sumino⁶, M. Tanida⁴,
T. Tomita⁴, H. Uehara⁴, T. Yamada⁶, S. Yamashita¹¹,
K. Yano⁴, T. Yoshioka⁴

Nagoya Univ.¹, JAEA², KEK³, Kyushu Univ.⁴, Tohoku Univ.⁵, Kyoto Univ.⁶, The Univ. of Tokyo⁷, Univ. of Tsukuba⁸, Osaka Univ.⁹, Sokendai¹⁰, Iwate Pref. Univ.¹¹

Lifetime measurement at J-PARC/BL05 (Beam Line 05)

- We aim to provide the most precise experimental neutron lifetime value for beam method as an important piece to solve the neutron lifetime puzzle
 - Goal: measurement with ~1 s accuracy

Experimental Setup

Analysis

TOF cut applied when the neutron bunches are completely in the TPC.

Selection by maximum energy deposit

This cut can clearly distinguish β and ${}^{3}He(n,p){}^{3}H$ events

Excess of background

- Neutrons scattered by the TPC operating gas are absorbed by the LiF inner wall, some of which emit γ-rays, creating (n,γ) background (BG) events.
- Although the events are created in the BG region close to the wall, the amount of the events was about five times larger than expected.
- The indeterminacy in the distribution of the (n,γ)BGs and the large uncertainty in the rate at which the BGs leak into the signal region were the largest sources of systematic error.

Upgrade of the Spin Flip Chopper

Spin Flip Chopper (SFC)

- The neutron intensity is limited by the size of the mirrors.
- Larger mirrors were installed in 2020.

- Larger magnetic mirror increases intensity by 3.2 times
- Statistical accuracy of 1 s can be reached in 3 months of measurement
- Neutron polarization *P*~99%

Data obtained

Physics measurements taken on 49 gas sets in 2014 - 2023

• With 100 kPa

Acquisition year	Num. of Gas Set	MLF Power [kW]	DAQ time [h]		
2014	1	300	59		
2015	1	500	31	First result	
2016	4	200	424		
2017	14	150, 300, 400	1303 (A)	Statistic	
2018	6	400, 500	614	$\sim 2.2 \text{ s}$	
2019	3	500	348		
2021	1	700	38	After SFC	
2022	3	700, 800	253 (B)	Upgrade	The combined
2023	1	800	126		_
With 50 kPa					Statistic is 1.4 s
Acquisition year	Num. of Gas Set	MLF Power [kW]	DAQ time [h]		
2017	3	150,300	253	Statistic	
2018	3	400, 500	357 ^(C)	~1.8 s	
2021	1	700	86	After SFC	
2022	7	700, 800	839 (D)	Upgrade	
2023	1	800	155	↓	•

Blind analysis

- For blind analysis, the number density of ³He was multiplied with a random number of 0.9-1.1.
- After fixed analysis (simulation for BG, pileup, efficiencies, etc), we opened the blind in Nov. 2024.

A new result from J-PARC

The improved results using data from 2014 to 2023 are as follows: $\tau_n = 877.2 \pm 1.7(stat.)^{+4.0}_{-3.6}(sys.) = 877.2^{+4.4}_{-4.0} s$ [Y. Fuwa et al., <u>arXiv:2412.19519v1</u>]

obtained from the proton trap.

Discussion

- The χ^2 /NDF of our fitting is large.
- If there is a pressure dependence, the fitting is going to be better, and then consistent with beam method.

Discussion

- The χ^2 /NDF of our fitting is large.
- If there is a pressure dependence, the fitting is going to be better, and then consistent with beam method.

Background suppression with solenoidal magnetic field

N. Sumi et al., Nucl. Inst. Meth. Phys. Res A 1045 (2023) 167586.

To achieve 1 s, we are preparing for background suppression by using multi-layered TPC in a solenoid magnetic field. The magnetic field can suppress the gamma ray background to 1/50.

Gamma ray suppression with magnetic field

The first data was obtained on this apparatus in Feb. 2024. 2 days of physics run, corresponds to ~90 s. The next run will come in next June.

Approved for the new JSPS budget (KibanA).

Summary

- Neutron lifetime is an important parameter for particle, nuclear, and astrophysics.
- However, the value have 9.5 s (4.6σ) discrepancy with two method of measurements
 - τ_n = 888.0 \pm 2.0 (Beam method)
 - τ_n = 878.4 \pm 0.5 (Storage method)
- A new "beam" experiment is ongoing at J-PARC
 - We obtained physics data (statistic 1.7 s).
 - Analysis has been fixed and opened blind in Nov. 2024.
 - The result is now on arXiv:

Y. Fuwa et al., <u>arXiv:2412.19519v1</u>

$\tau_n = 877.2 \pm 1.7 (stat.)^{+4.0}_{-3.7}(sys.) [s]$

- This result is consistent with bottle method measurements but exhibits a 2.3σ tension with the average value obtained from the proton-detection-based beam method.
- There is a still room for discussion in our results.
- Additional data will be taken with less background conditions.
- A new apparatus with a solenoid magnet is getting ready for physics measurements.