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» Hadron: Quark composite system (Nucleon is also a hadron)
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» Ordinary hadrons: Baryon Meson
Baryons as qqq (p, n, A, A¢, Ay, ...

Mesons as qq (, p, K, D, B, . )
» Many hadrons have been explained by @@
999, 99
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Observations of exotic hadrons

> Experimental studies of hadrons in accelerator facilities

KEK (et e™) @Tsukuba LHC (pp,PbPb,...), CERN @Geneve
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Observations of exotic hadrons

> Experimental studies of hadrons in accelerator facilities
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» Their masses, decays, quantum numbers, etc
picture (qqq, qq) = Exotic hadrons!?
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» Recently, New exotic hadrons have been reported Every Year
in the charm quark sector (m. ~ 1.3 GeV > m, ~ 0.002 GeV)
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Candidates of Exotic structures?
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Q. Do they exist?

Pentaquark What is their internal structure?

i) )

KMI 2025 (6 Mar.)

3/15



Hadronic molecules?

> Exotics as Hadronic molecule = Hadron (quasi) bound state

— expected near the thresholds

Y. Yamaguchi (Nagoya Univ) KMI 2025 (6 Mar.)

4/15



Hadronic molecules?

> Exotics as Hadronic molecule = Hadron (quasi) bound state
— expected near the thresholds

Analogous to Deuteron

=) ‘ C B =22 MeV
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Hadronic molecules?

> Exotics as Hadronic molecule = Hadron (quasi) bound state

— expected near the thresholds
P. = D(*)Eﬁ*) molecules?

I ‘ D® D*3.(4463MeV)

=) ‘ C e P,(4440)
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Hadronic molecules?

> Exotics as Hadronic molecule = Hadron (quasi) bound state

— expected near the thresholds
P. = D(*)Ei"‘) molecules?

I . D® D*5,(4463MeV)
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Eg*) ‘ C 23 Mev P.(4440)

» Exotic hadrons near thresholds
> DD*: X(3872), Z.(3900),..., DD*: T,,
> BB* Zb, Zbl

- *
> D(*)Z(C ): P, F. K Guo, et. al., Rev.Mod.Phys.90(2018)015004,Y. Y., et. al., J.Phys.G47(2020)053001,...
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Questions in the study of hadronic molecules

Q. Are exotic hadrons near thresholds explained as hadronic molecules?
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Questions in the study of hadronic molecules

Q. Are exotic hadrons near thresholds explained as hadronic molecules?
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=> Are there hadron composite states (= hadronic molecules) other than atomic nuclei?
How are such composite states constructed?
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Questions in the study of hadronic molecules

Q. Are exotic hadrons near thresholds explained as hadronic molecules?
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=> Are there hadron composite states (= hadronic molecules) other than atomic nuclei?
How are such composite states constructed?

Q. What is an interaction binding the constituent hadrons? (Hadron int. is not understood yet)

Eg*) baryon

q

@ 1 DO men » Long-range int.: m exchange
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Hadronic molecule

» Short-range int.: p,w, o exchanges? Quark exchanges?

= Do we really understand the nuclear force?
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=> Are there hadron composite states (= hadronic molecules) other than atomic nuclei?
How are such composite states constructed?

Q. What is an interaction binding the constituent hadrons? (Hadron int. is not understood yet)

Eg*) baryon

q

@ 1 DO men » Long-range int.: m exchange

@ ¢

Hadronic molecule
e Hadronic molecules provides an opportunity to reexamine nuclear physics
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» Short-range int.: p,w, o exchanges? Quark exchanges?

= Do we really understand the nuclear force?
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Doubly charmed tetraquark T
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LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351
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Doubly charmed tetraquark T'.. in LHCb (2022)

> Tz"c(ccﬂd) has been reported in LHCb! LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351

o O —— ] e The Breit—-Wigner parameterization
Z sof- i | 3 AMpy = —273 £ 61 £ 577} keV, Ty =410 £ 165 £ 43735 keV
o C ]
% 501 + H’ e Model analysis, T, ~ DD*
ERUS 1 ] #ﬁﬁgﬂ | AMyge = —360 £ 4075 keV, T'pore = 48 =274,
c +  data 3874 3876 q
30 == lT’k;D”D;’"* e [GeV/el ]
i - ] po D
e ﬁ e Ly .
1)~ “ f . T, %
g %H ﬁ ﬁ MH H HH H’rﬂﬂ ® ¢
ot t T4 f . — 3875.090 MeV
3.87 T 3. 88 3.89 T 39 I 0.273 MeV
MpOp0,t [Ge\/(g} — 3874.817 MeV

» Found just below the DD* threshold — DD* molecule?
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Why T..?

> First doubly-charmed tetraquark <+ There have been many reports of Hidden-charmed

tetraquark XY7Z

Doubly-charmed T, Hidden-charmed XYZ

At least, ccqq Coupled to ce
(See Poster of K. Miyake)
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Why T..?

> First doubly-charmed tetraquark <+ There have been many reports of Hidden-charmed
tetraquark XY7Z

= Minimal quark content is ccud (4 quarks) — Genuine exotic state

> Simple interactions rather than the nuclear force
7 can be exchanged between light quarks ¢, ¢

Doubly-charmed T, Two nucleons NN
Only qq join the int. Six ¢'s join the int.
KMI 2025 (6 Mar.) 8/ 15
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Meson exchange potentials (7, p, w, o)

D™ D™
q
. T T
A — L DDt @ ====@QLp p)
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g\ 17a 2
Vr(r) = (2}T> 3 [Sl - S9C(r) + Sg, 5, T(T)] (Contact term is removed)
K
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Meson exchange potentials (7, p, w, o)

DX DX
@’
~. 7T s
. = L p=pe@----@QLpe)pe)
q
Q
D) D)

2
Vn(r) (29; ) ; [3'1 : 3’2 C'(T) + 53152 T(T)] (Contact term is removed)

Table Coupling constants

> Form factor with Cutoff A T gr 0.59 D* — Dr [1]
pw B 0.9 Lattice [2]
F(ZI.Q) _ A% — 721- A 0.56 Gev—! B decay [3]
A2 + 62 g 9o 3.4 gaNN/3 [4]
Cutoff A Fix to reproduce Br,,

Blndln g energy is obtained by solving the Schroding er

Y Yamaguchi (NRgoya

h5|agyations.
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Numerical results: D(*)D(*) bound state T. asanuma, et 21, PRD 110, 074030 (2024)

> Cutoff A is determined to reproduce the 7. binding energy
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> Cutoff A is determined to reproduce the 7. binding energy
» Only 7 exchange — No bound state
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Numerical results: D(*)D(*) bound state T. asanuma, et 21, PRD 110, 074030 (2024)

> Cutoff A is determined to reproduce the T.. binding energy
» Only 7 exchange — No bound state
» 7mpwo exchanges — We find A = 1182 MeV (Bound)

Wave functions

A 1182 MeV = oo e
B 0.27 MeV (Input) .
PDD* (351) 987% 01s T Ve
Pop-(Dy) 0.840% : \
Poepe(381) 0.348% TIPS
Poep-(3D)) 0.106% R R
) 642fm w = —
”D*D*(D)I ’ rifm] " '

> The 7 exchange attraction is not enough to generate a bound state = The short-range
interaction is also important.

¥ DI (8, 5. dominant. Loosely bound state.,; 05 (6 )
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Energy expectation values

Y. Yamaguchi (Nagoya Univ)
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Energy expectation values

oL __® mtp e,
DD*<3s1) 081 -05 -044| -«
DD*(D)|-0.81 | oos  an  as
D*D*CSp| 05| v e e
D*D*CD)|-0.44 | s am om

- 4.0

DD*(S,) DD*CD,) D*D*(S,) D*D*(°D,)
> Strong attraction from the o exchange in the DD*(3S5;) diagonal component

> Attraction of the off-diagonal components from 7 + p
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Energy expectation values
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.

DD*(S,) DD*CD,) D*D*(S,) D*D*(°D,)
> Strong attraction from the o exchange in the DD*(3S5;) diagonal component

> Attraction of the off-diagonal components from 7 + p

> Attraction from the isospin independent int (o ex.) is also important in the nuclear

force.
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From T.. to other exotic states

T.. as DD* molecule

> T.. can be understood by the hadronic molecular

picture G@ ) 0
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From T.. to other exotic states

T.. as DD* molecule

> T.. can be understood by the hadronic molecular
picture
> Then, symmetries predict its partner states

» Heavy quark flavor symmetry ¢ — b: T}, as BB*

= Large mass of B (~ 5280 MeV > D(1870))
suppresses a kinetic energy — Likely bound
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From T.. to other exotic states

T.. as DD* molecule

> T.. can be understood by the hadronic molecular
picture
> Then, symmetries predict its partner states
» Heavy quark flavor symmetry ¢ — b: T}, as BB*
= Large mass of B (~ 5280 MeV > D(1870))

suppresses a kinetic energy — Likely bound

» Superflavor symmetry ¢ — ¢¢ : D=, pentaquark D=, molecule

(cceqq)
= multicharm states @@
=> Observations of such partners in future experiments @ ‘~.

would confirm T.. as a hadronic moelcule
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From D® D® to B*) B®™) (Ty) M. sakai, v.¥, PRD 100, 054016 (2024)

» The bottom counterpart of T, which has not been reported so far

» Employing the same parameters used in T
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From D® D® to B*) B®™) (Ty) M. sakai, v.¥, PRD 100, 054016 (2024)

» The bottom counterpart of T, which has not been reported so far
» Employing the same parameters used in T
> Ty, bound state is predicted

Wave functions

B | 46.0 MeV (Bound) e I
Ppp- (351) 70.7% :T o8 s B'B'(;sl)1
Ppp-(3Dy) 4.71% £ 00 -— B'B'(Dy)
Ppep<(391) 21.6% § 0.4
Pp-p-(3Dy) 3.00% S 02
(r%) 0.62 fm 0.0
0 1 2 3 4
» Deeply bound state rifm]
» The large mass of B™) suppresses the kinetic term.
BB* — B*B* mixing is enhanced due to the small Amg = mpg- — mp
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» Employing the same parameters used in T,
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From D® D™ to D(*)Eg";) T. Asanuma, Y.Y, M. Harada, PRD 110, 074030 (2024)

» Employing the same parameters used in T,
» We obtain the D=, bound state for I(J¥) = 0(1/27) !

Wave functions

A 1182 MeV (Input) Tl

B 7.46 MeV (Bound) 00 {——enZ2ZZETTTTeceg
PDECC(QSU?) 98.3% __,.'" DEK(ZS;)
Ppz: (*Dys) 0.0012 % 02 b=.('Dy
Ppez, (251 )5) 0.076 % T - Bzl
Ppez, (*Dy)2) 0.30 % 04 -== B"Z('Dy
PD*E?(‘(2S1/2) 0.28 % /,’/ -=- D"z(%s)
PD*EZ;K(‘lDI/Q) 0.074 % s e --- D'z.(*Dy)
Ppez: (°Dyjs) 0.97 % e DE.(%S) b'=.Dy

Vi) 1.38 fm s e R A
rifm]

> Attraction is generated in the similar way to 7T..: Strong o ex., and the tensor force of 7 ex.
» D=.. would be found in the future experiment as a partner of 7.,
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Summary

» Exotic hadrons as hadronic molecules have been discussed.
=> Understanding how such states are constructed and which interactions are important.
» Doubly charmed tertaquark T, has attracted a lot of interest.
» T, as a D D™ molecule with the one boson exchange potentials
» Importance of the o exchange and the tensor force of the m exchange
> Symmetries predict partner states of T,
> We obtained Ty, as a bottom counterpart and D= as a superflavor partner.

> We hope these exotic states will be found in future experiments.
Ref. T. Asanuma, Y.Y, M. Harada, Phys. Rev. D 110, 074030 (2024),
M. Sakai, Y.Y, Phys. Rev. D 109, 054016 (2024)
Thank you for your kind attention.
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