Exotic hadrons as heavy hadronic molecules and their partners

Yasuhiro Yamaguchi,

Department of Physics & KMI, Nagoya University, Japan

KMI2025 : The 6th KMI International Symposium, 5-7 March 2025, Nagoya University, Nagoya, Japan

Hierarchical structure of matters

Hierarchical structure of matters

Hadron: Quark composite system (Nucleon is also a hadron)

Hierarchical structure of matters

- Hadron: Quark composite system (Nucleon is also a hadron)
 - Ordinary hadrons:

Baryons as qqq $(p, n, \Lambda, \Lambda_c, \Lambda_b, ...)$

Mesons as $q\bar{q}$ ($\pi, \rho, K, D, B, ...$)

Many hadrons have been explained by <u>qqq</u>, <u>qq</u> !
Y. Yamaguchi (Nagoya Univ)

Observations of exotic hadrons

Experimental studies of hadrons in accelerator facilities

KEK (e^+e^-) @Tsukuba

Japanese accelerator!

LHC (pp,PbPb,...), CERN @Geneve

Large Hadron Collider

Observations of exotic hadrons

▶ Recently, New exotic hadrons have been reported Every Year in the charm quark sector $(m_c \sim 1.3 \text{ GeV} \gg m_u \sim 0.002 \text{ GeV})$ Y. Yamaguchi (Nagova Univ)

Candidates of Exotic structures?

Candidates of Exotic structures?

• Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state

→ expected near the thresholds

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- expected near the thresholds

- ► Exotics as Hadronic molecule ⇒ Hadron (quasi) bound state
- \rightarrow expected near the thresholds

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- expected near the thresholds

- Exotic hadrons near thresholds
 - ▶ $D\bar{D}^*$: X(3872), Z_c(3900),..., DD^{*}: T_{cc}
 - $\blacktriangleright B\bar{B}^*$: Z_b , Z_b'
 - $\blacktriangleright \ \bar{D}^{(*)}\Sigma_c^{(*)}: \ P_c \ \text{F. K. Guo, et. al., Rev.Mod.Phys.} 90 (2018) 015004, \text{Y. Y., et. al., J.Phys.G47} (2020) 053001, \dots$

Y. Yamaguchi (Nagoya Univ)

Q. Are exotic hadrons near thresholds explained as hadronic molecules?

Q. Are exotic hadrons near thresholds explained as hadronic molecules?

⇒ Are there hadron composite states (= hadronic molecules) other than atomic nuclei? How are such composite states constructed?

Q. Are exotic hadrons near thresholds explained as hadronic molecules?

- ⇒ Are there hadron composite states (= hadronic molecules) other than atomic nuclei? How are such composite states constructed?
- Q. What is an interaction binding the constituent hadrons? (Hadron int. is not understood yet)

Q. Are exotic hadrons near thresholds explained as hadronic molecules?

⇒ Are there hadron composite states (= hadronic molecules) other than atomic nuclei? How are such composite states constructed?

Q. What is **an interaction** binding the constituent hadrons? (Hadron int. is not understood yet) $\Sigma_{c}^{(*)}$ baryon

- Long-range int.: π exchange
- Short-range int.: ho, ω, σ exchanges? Quark exchanges?
- \Rightarrow Do we *really* understand the nuclear force?

Q. Are exotic hadrons near thresholds explained as hadronic molecules?

- ⇒ Are there hadron composite states (= hadronic molecules) other than atomic nuclei? How are such composite states constructed?
- **Q.** What is **an interaction** binding the constituent hadrons? (Hadron int. is not understood yet) $\Sigma_{c}^{(*)}$ baryon

- **b** Long-range int.: π exchange
- Short-range int.: ρ, ω, σ exchanges? Quark exchanges?
- \Rightarrow Do we *really* understand the nuclear force?

Hadronic molecule

• Hadronic molecules provides an opportunity to reexamine nuclear physics

Y. Yamaguchi (Nagoya Univ)

KMI 2025 (6 Mar.)

Doubly charmed tetraquark T_{cc}

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351

KMI 2025 (6 Mar.)

Doubly charmed tetraquark T_{cc} in LHCb (2022)

T $_{cc}^+(cc\overline{u}\overline{d})$ has been reported in LHCb! LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351

Why T_{cc} ?

► First doubly-charmed tetraquark ↔ There have been many reports of Hidden-charmed tetraquark XYZ

Hidden-charmed XYZ

At least, $cc\overline{q}\overline{q}$

Coupled to $c\overline{c}$ (See Poster of K. Miyake) KMI 2025 (6 Mar.)

Y. Yamaguchi (Nagoya Univ)

Why T_{cc} ?

- ► First doubly-charmed tetraquark ↔ There have been many reports of Hidden-charmed tetraquark XYZ
- \Rightarrow Minimal quark content is $cc\bar{u}\bar{d}$ (4 quarks) \rightarrow Genuine exotic state

At least, $cc\bar{q}\bar{q}$

Coupled to $c\overline{c}$ (See Poster of K. Miyake) KMI 2025 (6 Mar.)

Y. Yamaguchi (Nagoya Univ)

Why T_{cc} ?

- ► First doubly-charmed tetraquark ↔ There have been many reports of Hidden-charmed tetraquark XYZ
- \Rightarrow Minimal quark content is $cc\bar{u}\bar{d}$ (4 quarks) \rightarrow Genuine exotic state
- Simple interactions rather than the nuclear force π can be exchanged between light quarks q, q̄

Doubly-charmed T_{cc}

Only $\overline{q}\overline{q}$ join the int.

Six q's join the int.

Meson exchange potentials $(\pi, \rho, \omega, \sigma)$

Meson exchange potentials $(\pi, \rho, \omega, \sigma)$

Binding energy is obtained by solving the Schrödinger equations.

• Cutoff Λ is determined to reproduce the T_{cc} binding energy

- \blacktriangleright Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- > $\pi \rho \omega \sigma$ exchanges \rightarrow We find $\Lambda = 1182$ MeV (Bound)

The π exchange attraction is not enough to generate a bound state \Rightarrow The short-range interaction is also important.

DD* (S) is dominant. Loosely bound state. KMI 2025 (6 Mar.)

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- > $\pi \rho \omega \sigma$ exchanges \rightarrow We find $\Lambda = 1182$ MeV (Bound)

The π exchange attraction is not enough to generate a bound state \Rightarrow The short-range interaction is also important.

DD* (S) is dominant. Loosely bound state. KMI 2025 (6 Mar.)

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- $\pi \rho \omega \sigma$ exchanges \rightarrow We find $\Lambda = 1182$ MeV (Bound)

The π exchange attraction is not enough to generate a bound state \Rightarrow The short-range interaction is also important.

DD* (S) is dominant. Loosely bound state. KMI 2025 (6 Mar.)

Energy expectation values

	$\langle \mathbf{V} \rangle$		[MeV]		
DD*(³ S ₁)	-4	-0.81	-0.5	-0.44	0.5
DD*(³ D ₁)-	-0.81	0.018	-0.11	0.015	1.0
D*D*(³ S ₁) -	-0.5	-0.11	-0.15	-0.071	2.0 2.5
D*D*(³ D ₁)-	-0.44	0.015	-0.071	0.002	3.0 3.5
$DD^{*}(^{3}S_{1})$ $DD^{*}(^{3}D_{1})$ $D^{*}D^{*}(^{3}S_{1})^{*}D^{*}D^{*}(^{3}D_{1})$					

Energy expectation values

Strong attraction from the σ exchange in the $DD^*({}^3S_1)$ diagonal component

• Attraction of the off-diagonal components from $\pi + \rho$

Energy expectation values

Strong attraction from the σ exchange in the $DD^*(^3S_1)$ diagonal component

• Attraction of the off-diagonal components from $\pi + \rho$

Attraction from the isospin independent int (σ ex.) is also important in the nuclear force.
Y. Yamaguchi (Nagoya Univ)
KMI 2025 (6 Mar.)
11 / 15

From T_{cc} to other exotic states

 T_{cc} can be understood by the hadronic molecular picture

From T_{cc} to other exotic states

- T_{cc} can be understood by the hadronic molecular picture
- Then, symmetries predict its partner states

► Heavy quark flavor symmetry c → b : T_{bb} as BB* ⇒ Large mass of B (~ 5280 MeV > D(1870)) suppresses a kinetic energy → Likely bound

From T_{cc} to other exotic states

- T_{cc} can be understood by the hadronic molecular picture
- Then, symmetries predict its partner states
 - ► Heavy quark flavor symmetry c → b : T_{bb} as BB* ⇒ Large mass of B (~ 5280 MeV > D(1870)) suppresses a kinetic energy → Likely bound
 - Superflavor symmetry $c \rightarrow \overline{c}\overline{c}$: $\overline{D}\Xi_{cc}$ pentaquark $(cc\overline{c}qq)$
 - \Rightarrow multicharm states
- \Rightarrow Observations of such partners in future experiments would confirm T_{cc} as a hadronic moelcule

From $D^{(*)}D^{(*)}$ to $B^{(*)}B^{(*)}$ (T_{bb})

- > The bottom counterpart of T_{cc} which has not been reported so far
- Employing the same parameters used in T_{cc}

From $D^{(*)}D^{(*)}$ to $B^{(*)}B^{(*)}$ (T_{bb})

- > The bottom counterpart of T_{cc} which has not been reported so far
- Employing the same parameters used in T_{cc}
- > T_{bb} bound state is predicted

В	46.0 MeV (Bound)		
$P_{BB^*}(^3S_1)$	70.7%		
$P_{BB^*}(^3D_1)$	4.71%		
$P_{B^*B^*}({}^3S_1)$	21.6%		
$P_{B^*B^*}({}^3D_1)$	3.00%		
$\sqrt{\langle r^2 \rangle}$	0.62 fm		

Deeply bound state

► The large mass of $B^{(*)}$ suppresses the kinetic term. $BB^* - B^*B^*$ mixing is enhanced due to the small $\Delta m_B = m_{B^*} - m_B$

Y. Yamaguchi (Nagoya Univ)

KMI 2025 (6 Mar.)

• Employing the same parameters used in T_{cc}

T. Asanuma, Y.Y, M. Harada, PRD 110, 074030 (2024)

Employing the same parameters used in T_{cc}

From $D^{(*)}D^{(*)}$ to $\bar{D}^{(*)}\Xi^{(*)}$

• We obtain the $\overline{D}\Xi_{cc}$ bound state for $I(J^P) = 0(1/2^-)$!

Attraction is generated in the similar way to T_{cc}: Strong σ ex., and the tensor force of π ex.
 DΞ_{cc} would be found in the future experiment as a partner of T_{cc}

Y. Yamaguchi (Nagoya Univ)

KMI 2025 (6 Mar.)

Summary

- Exotic hadrons as hadronic molecules have been discussed.
- \Rightarrow Understanding how such states are constructed and which interactions are important.
- Doubly charmed tertaquark T_{cc} has attracted a lot of interest.
 - ▶ T_{cc} as a $D^{(*)}D^{(*)}$ molecule with the one boson exchange potentials
 - Importance of the σ exchange and the tensor force of the π exchange
- Symmetries predict partner states of T_{cc}
 - ▶ We obtained T_{bb} as a bottom counterpart and $\overline{D}^{(*)}\Xi_{cc}^{(*)}$ as a superflavor partner.
 - We hope these exotic states will be found in future experiments.

Ref. T. Asanuma, Y.Y, M. Harada, Phys. Rev. D 110, 074030 (2024),
 M. Sakai, Y.Y, Phys. Rev. D 109, 054016 (2024)

Thank you for your kind attention.

KMI 2025 (6 Mar.)