FASER experiment at the LHC and its connection to the cosmic-ray muon puzzle Ken Ohashi (University of Bern)

1

2025 March 6th — KMI Symposium 2025 — Nagoya University

Ultra-high-energy cosmic rays and the muon puzzle

The number of muons measured by the Pierre Auger experiment shows a much larger value than the simulation (muon puzzle)

Ultra-high-energy cosmic rays and the muon puzzle

 π^0 -> electromagnetic shower Other hadrons -> hadronic shower (produces μ)

- Scenarios to solve this issue
 - Some mechanism to reduce π^0 productions?
 - Less π^0 , more Kaons
 - Less π^0 , more ρ^0
 - Less π^0 , more baryons

- How can we confirm or reject these scenarios experimentally?
 - Measure hadronic interactions at colliders!
 - But which interaction should we measure?

Which particles in which interactions should we measure?

In an air shower induced by $10^{19} \text{ eV}(=10^{10} \text{ GeV})$ proton, We have a huge number of particles from $\mathcal{O}(1)$ to $\mathcal{O}(10^{10})$ GeV

Simulation study:

(K.O., Anatoli Fedynitch, Hiroaki Menjo, in prep.)

Focus on a simple scenario of the strangeness enhancement

Reduce pions (π^{\pm} , π^{0}) by a factor (1- $f_{enhance}$) and increases kaons (K^{\pm} , K^{0}) simultaneously, without changing total pion/kaon productions

Check how the number of muons N_{μ} changes when we modify a small area of interactions

Calculate
$$\mathscr{D} = \frac{1}{N_{\mu}} \frac{\partial N_{\mu}}{\partial f_{\text{enhance}}} (x_{\text{lab}}, E_{\text{projectile}})$$

0.1 GeV

4

Important interactions — forward π K productions

Simulation study:

(K.O., Anatoli Fedynitch, Hiroaki Menjo, in prep.)

Results (contour) Top 25%, 50%, 80% cumulative value of $\mathscr{D} = \frac{1}{N_{\mu}} \frac{\partial N_{\mu}}{\partial f_{\text{enhance}}} (x_{\text{lab}}, E_{\text{projectile}})$

Inside area
$$\mathscr{C}_A$$
 closed by the solid line contour,

$$\int_{\mathscr{C}_A} p d\mathscr{C}' = 0.80, \text{ where } p = \frac{\mathscr{D}(\mathscr{C}')}{\int \mathscr{D} d\mathscr{C}}$$

Two regions are important for the number of muons

- (a) by the primary cosmic ray
- (b) by the secondary projectile particles with energy $10^4 \text{ GeV} < E_{\text{beam}} < 10^{-2} \times E_{\text{primary}}$ and $0.01 < x_{\text{lab}} < 0.5$

<u>Covered by FASER experiment</u>

The FowArd Search ExpeRiment (FASER)

An experiment at LHC for Neutrino measurements & Long-lived particle search

Physics

- Light long-lived particle search
- Neutrino-nucleon interaction in the detector
- Hadron production studies using neutrino

The FASER detector & neutrino results

First detection of neutrinos at collider (PRL 131 031801, 2023, FASER spectrometer) **First detection of** $\stackrel{(-)}{\nu}_{e}$ **at collider** (PRL 133 021802, 2024, FASER ν emulsion detector) ν_{μ} and $\bar{\nu}_{\mu}$ measurements with energy (arXiv 2412.03186, FASER spectrometer)

Neutrino interaction in Tungsten targets

FASER ν detector **Emulsion films between** tungsten plates

The FASER ν detector

FASER ν detector

Emulsion films between tungsten plates

1.1 mm tungsten plates x 730: target **Emulsion film x 730: to measure tracks**

Emulsion films (25cm x 30cm)

Microscope in Nagoya Univ.

Event selection

FASER Collaboration PRL 133 021802, 2024

2nd module of 2022,

Installed from July 26th to September 1, 9.5 fb^{-1}

Main background: neutral hadrons

- lower energy
- Well removed by applying a track or a EM shower more than 200GeV

Event selections

- 5 or more tracks attached to a vertex
- No charged parent track
- 4 or more tracks with $tan_{\theta} < 0.1$
- $\tan \theta > 0.005$ for muon or EM shower
- An EM shower or a track of more than 200 GeV
- $\phi > 90^{\circ}$

First $\nu_{\rho}^{(-)}$ detection by the FASER ν module

- $\stackrel{(-)}{\nu}_{e}$ candidates: 4 events $\stackrel{(-)}{\nu}_{\mu}$ candidates: 8 events
- Background estimations
 - ν_e : 0.025^{+0.015}_{-0.010}
 - ν_{μ} : 0.22^{+0.09}_{-0.07}
- significance
 - ν_e : 5.2 σ
 - ν_{μ} : 5.7 σ
- This is only 1.5 % of data taken with the FASER ν emulsion detector so far
 - More results will follow soon!

Analysis using the FASER spectrometer

- Collision event with good data quality (65.6 fb-1)
- Triggered by any scintillator downstream of the veto scintillators
- No signal in two front veto scintillators(<30 pC) \bullet
- The time difference of the scintillators before and after the tungsten target
- At least 14 hits in the silicon tracker across at least seven layers (for selecting good track)
- At least one track passes through all three tracking stations with >100 GeV
- Track in fiducial tracking volume, <95 mm
- Track extrapolate to <120 mm in front veto scintillator
- Angle less than 25 mrad with respect to the detector axis \bullet

Number of neutrino interactions

Fit with normalization factors for π and K

Template fit of measured neutrinos Normalization for π and K for free parameters

We are starting to validate the hadron productions

Summary

- The FASER experiment is an experiment located at 480m from the ATLAS interaction point at LHC aiming to search for long-lived particles and neutrinos.
- Neutrinos measured by FASER are a proxy of hadron productions from p-p collisions.
- For the muon puzzle of ultra-high-energy cosmic rays, pions and kaons with 1%- 50% of beam energy are important, and FASER covers this well.
- In the past two years, we have reported three neutrino analyses: one using the FASER emulsionbased detector and the other using the FASER spectrometer.
- Four $\stackrel{(-)}{\nu}_{e}$ and eight $\stackrel{(-)}{\nu}_{\mu}$ candidates are reported using the FASER ν detector, corresponding to >5 σ . This is the first $\stackrel{(-)}{\nu}_{e}$ measurements using a collider.
- 362 neutrino candidates are detected by the latest analysis using 65.5 fb⁻¹ of data by the FASER spectrometer.
- ν_{μ} and $\bar{\nu}_{\mu}$ are measured with energy separately. These results are compared with hadronic interaction models, starting the validation of hadronic interactions using the collider neutrino.
- We have measured 190 fb^{-1} so far. More results will follow soon!!

-p collisions. vith 1%- 50% of beam

Back ups

Which particles in which interactions should we measure?

In an air shower induced by $10^{19} \text{ eV}(=10^{10} \text{ GeV})$ proton, We have a huge number of particles from $\mathcal{O}(0.1)$ to $\mathcal{O}(10^{10})$ GeV Which particles in which interactions is important?

Simulation study:

(K.O., Anatoli Fedynitch, Hiroaki Menjo, in prep.)

Focus on a simple scenario of the strangeness enhancement

Swap pions(π^{\pm} , π^{0}) by kaons (K^{\pm} , K^{0}) simultaneously with a fraction of f_{enhance}

Check how the number of muons N_{μ} changes when we modify a small area of interactions

Calculate
$$\mathscr{D} = \frac{1}{N_{\mu}} \frac{\partial N_{\mu}}{\partial f_{\text{enhance}}} (x_{\text{lab}}, E_{\text{projectile}})$$

Calculation method of derivative

Simulation set-up

- Simulation package MCEq
- SIBYLL 2.3d for hadronic interaction
- 10 bins per decade
- Calculate N_{μ} with modification by $f_{\rm enhance} = 0.005$
 - Swap 0.5% of pions into kaons.

How to calculate effects actually

- Define an area \mathscr{C}' with $E_{\rm projectile}$ and $E_{\rm secondary}$
 - Size of a bin: $\log_{10} E = 0.1$
- Swap pions by kaons with a fraction $f_{\rm enhance}$ and calculate the number of muons by MCEq
- Swap (pi+ / pi- / pi0) to (K+ / K- / K0S/L) simultaneously.
 - Swap fraction f_{enhance}

•
$$M'_{\pi} = M_{\pi} - f_{\text{enhance}} M_{\pi} + f_{\text{enhance}} M_{K}$$

- $M'_{K} = M_{K} f_{\text{enhance}}M_{K} + f_{\text{enhance}}M_{\pi}$
- Calculate \mathscr{D} at that area and repeat for all phase space

FASER experiment

FORWARD SEARCH EXPERIMENT AT THE LHC

Comparison with hadronic interactions

EPOSLHC for π and K productions POWHEG + PYTHIA8 tune for charmed hadron productions

FASER FASER> EPOS-LHC+POWHEG+PYTHIA8 $\mathcal{L} = 65.6 \text{ fb}^{-1}$ $u_{\mu} + ar{
u}_{\mu}$ $ar{
u}_{\mu}$ u_{μ} u_{μ} 800 800 *** Neutrino interactions** # Neutrino interactions $u_{\mu}(\pi)$ $u_{\mu}(K)$ 600 $\nu_{\mu} (D, \Lambda_c)$ Data 400 Sys. unc. 200 ()100 300 600 $\left(\right)$ -**์100** 1000 100 300 > 1000 1000 300 600 Neutrino energy [GeV]

We are starting to validate the hadron productions

DPMJET III-2019

