The 6th KMI International Symposium @ Nagoya Univ.

Stochastic GW background as a probe of the early universe

Sachiko Kuroyanagi IFT UAM-CSIC / Nagoya University 7 Mar 2025

Gravitational wave (GW) observation

Advanced-VIRGO (2017-)

Stochastic GW background

Continuous and random GW signal coming from all directions \rightarrow very similar to noise

Stochastic GW background as a probe of the early universe

How to detect a stochastic background

Experiment's sensitivities

Upper bounds on stochastic background

ρ_{GW}: Energy density of GWs

 ρ_{c} : Critical density of the Universe

BBN + CMB bound: $\Omega_{GW} < 2.7 \times 10^{-6}$

Observation run	Year	95% Upper bound (for a flat spectrum)
LIGO S6	2009	Ωgw < 6.9 × 10 ⁻⁶
Advanced LIGO 01	2016	Ωgw < 1.7 × 10 ⁻⁷
Advanced LIGO O2	2019	Ωgw < 6.0 × 10 ⁻⁸
Advanced LIGO O3 (+ Virgo)	2021	Ωgw < 5.8 × 10 ⁻⁹
Advanced LIGO 04a	2025	Ωgw < ???

→ becoming a competitive tool to constrain early universe models

Upper bounds on stochastic background

ρ_{GW}: Energy density of GWs

 ρ_{c} : Critical density of the Universe

BBN + CMB bound: $\Omega_{GW} < 2.7 \times 10^{-6}$

Observation run	Year	95% Upper bound (for a flat spectrum)
LIGO S6	2009	Ω _{GW} < 6.9 × 10 ⁻⁶
Advanced LIGO 01	2016	Ωgw < 1.7 × 10 ⁻⁷
Advanced LIGO 02	2019	Ω _{GW} < 6.0 × 10 ⁻⁸
Advanced LIGO O3 (+ Virgo)	2021	Ω _{Gw} < 5.8 × 10 ⁻⁹
Advanced LIGO 04a	2025	Ωgw < ???

Let us provide detailed constraints!

(but using O3 data; O4a data release expected in August 2025)

Generation mechanisms

Evolution equation for GWs

 $\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{a^2}\nabla^2 h_{ij} = 16\pi G\Pi_{ij}$

1. Non-negligible initial condition

- Inflation
 - \rightarrow quantum fluctuations

2. Sourced by matter component of the Universe

- Preheating
- \rightarrow rapid particle productions
- Phase transition
- \rightarrow bubble collisions
- Cosmic strings
- \rightarrow heavy strings

generated in phase transition

Models to investigate Several early universe models predict a relatively large GW amplitude Universe's history Type 1 GWs from inflation: Typically very small $\Omega_{GW} < 10^{-16}$ Inflation Type 2 **1** SU(2) Gauge field during inflation \rightarrow act as a source of GWs 2 Kination phase after inflation Type 1 Reheating \rightarrow inflationary GWs decay slower than usual Type 2 **3** Scalar induced GWs Radiation \rightarrow large curvature perturbations dominated (that eventually forms PBHs) act as a source of GWs Type 2 4 Primordial black hole (PBH) mergers Matter \rightarrow PBHs form binary system and emit GWs dominated superpositions form a stochastic background

Likelihood analysis

pygwb 1.5.1

pip install pygwb

Renzini et al., ApJ 952, 25 (2023)

1) SU(2) gauge field during inflation

Coupling between inflaton and SU(2) gauge field

$$S_{\text{CNI}} = \int d^4x \sqrt{-\det(g_{\mu\nu})} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{2} (\partial\phi)^2 - V(\phi) - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \frac{\alpha_f}{4} \phi F^a_{\mu\nu} \tilde{F}^{a\mu\nu} \right]$$
$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g \varepsilon^{abc} A^b_\mu A^c_\nu$$

 \rightarrow Anisotropic stress of the gauge field sources GWs during inflation

1) SU(2) gauge field during inflation

C. Burger et al. (+SK), PRD 110.084063 (2024)

1) SU(2) gauge field during inflation

C. Burger et al. (+SK), PRD 110.084063 (2024)

2 Early kination phase (stiff EoS)

Equation of state (EoS, w) larger than 1/3 leads to an enhancement in inflationary GWs

Early matter & kination domination (realized in axion motivated model)

Ko & Harigaya, PRL 124, 111602 (2020) Gouttenoire et al. arXiv:2111.01150

f_{RD}, f_{SD}: transition frequencies

→ Connects to the energy scale of the Universe at the time of transitions (MD→KD→RD)

H. Duval et al. (+SK), PRD 110.103503 (2024)

③ Scalar induced GWs

Enhanced primordial curvature perturbations source both PBHs and GWs

Many inflationary models predicting large curvature perturbations (and producing PBHs) exhibit Non-Gaussianity (NG)

- ultra slow roll inflation
- multi field inflation
- couplings leading to particle production, etc.

R. Inui, S. Jaraba, SK, S. Yokoyama, JCAP 05 082 (2024)

2 PBH binaries

Superpositions of PBH binaries form a stochastic background

T. Boybeyi, S. Clesse, SK, M. Sakellariadou, arXiv:2412.18318

Note

GW observation currently provide limited information: Only Ω_{GW} amplitude in the narrow frequency range

 \rightarrow There are often degeneracies in parameter space when the model has many parameters.

Multi-band observations (CMB, PTA, space, ground, etc.) may play a key role in the future.

Summary

Stochastic GW background can be a unique probe of high-energy physics in the early universe

- Upper bounds on the stochastic background amplitude keeps improving with upgraded sensitivities and longer observation time.
- We can provide constraints on different types of model using the public code by the LVK collaboration (pygwb)
- We have provided constraints on model parameters for the early universe using the LVK O3 data
- 1. SU(2) gauge field inflation Burger et al. (+SK), PRD 110.084063 (2024)
- 2. Early kination phase Duval et al. (+SK), PRD 110.103503 (2024)
- **3.** Scalar induced GWs Inui et al. (+SK) JCAP 05, 082 (2024)
- 4. PBH binaries Boybeyi et al. (+SK), arXiv:2412.18318