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1. Cold dark matter (CDM)

(c) The Millennium Simulation Project

mostly uniform density

The evolution of the large-scale structure is dominated by the gravity of CDM

a self-gravitating collisionless fluid following Vlasov-Poisson equations
phase-space distribution function

Vlasov equation

Poisson equation
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CDM halo

Need to solve the 6D phase space evolution − computationally costly 
(N-body simulation is an “effective” solver of Vlasov-Poisson equations)



2. Cold nature
Initially negligible velocity dispersion

f(tini, x, v) = ρ̄m a3 (1 + δm(t, x)) δD(v − v̄(t, x))

➡︎ 3D phase space sheet moving in 6D phase space 

 (single stream assumption)

vlafroid 
(S.Colombi & A.Taruya)

1D demo.



3. Overview of halo formation history
single stream multi stream

shell crossing



3. Overview of halo formation history

shell crossing

A. Pre-collapse phase

Zel’dovich solution 
Perturbation theory

single stream multi stream

exact in 1D



3. Overview of halo formation history

shell crossing

B. Post-collapse phaseA. Pre-collapse phase

multi-valued function 
caustics - boundary separating single/multi 
stream regions

divergence

e.g.  
Effective theory

Zel’dovich solution 
Perturbation theory

single stream multi stream

Zel’dovich (1970) 
Shandarin & Zeldovich (1989)

Baumann et al. (2012) 
Carrasco et al. (2012)
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Fig. 10.—Spherical symmetry: instantaneous location of all particles in 
phase space for e = 0.8. 

each sequence shows the simultaneous location of all particles 
on the dx/dt — x plane and demonstrates the existence of a 
denumerably infinite set of points along the phase plane curve 
at which dx(t, = 0. These points are associated with 
the density spikes seen in the third figure of each sequence. The 
spikes are contributed by particles which are approaching 
apapsis, with the exception that the first apapsis passage, turn- 
around, is not associated with a spike. The infinite-density 
spikes are truncated in the figures because the density is aver- 
aged over bins. The fourth and final figure in each sequence 
displays log (^) versus log {x/X) and illustrates the power-law 
nature of the mass profiles. 

By and large, the detailed numerical solutions confirm the 
predictions of the asymptotic analytic theory which are sum- 
marized in equations (39). The largest discrepancy is that the 
value of y obtained from the analytic theory does not accu- 
rately estimate the rate at which JÍ increases with x. This may 
be seen by comparing the slopes of the log (^) versus log 
{x/X) plots with the theoretically predicted power laws given 
by the dashed lines. 

V. COMPARISON WITH PREVIOUS CALCULATIONS 
a) Planar Simulations 

Other planar similarity solutions may be compared with 
numerical calculations done by Melott (1983), who used a one- 
dimensional cloud-in-cell method to simulate the large-scale 
clustering of 10,000 collisionless particles. Melott began his 
calculation at redshift z = 10,000 and terminated it at z = 0. 
His initial density perturbation was produced by a sinusoidal 
variation of amplitude 10 ~ 3 in the spacing of the particles. The 
entire system extended over one wavelength. Our similarity 
solutions demand different initial conditions. Nevertheless, 
they display the same qualitative features found in Melott’s 
simulations. For example, compare the dx/dt versus x plot 
shown in our Figure 2 with Melott’s Figure 8a. 

b) Spherical Simulations 
Interest in galaxy formation stimulated many investigations 

of spherically symmetric gravitational collapse. Early studies 
attempted to account for the approximate p ccr~3 distribution 
of the luminous material in elliptical galaxies. It was found that 

log( r/R ) 
Fig. 11.—Spherical symmetry: ratio of actual to background density for 

e = 0.8. 

the collapse of an initially static, uniform-density sphere 
resulted in a final configuration with p ccr~3 (Henon 1964; 
Gott 1973). The secondary infall of bound but initially expand- 
ing material onto a collapsed core was discussed by Gunn and 
Gott (1972). Gott (1975) made the first attempt to determine a 
final density profile due to secondary infall. He considered a 
central overdense core embedded in an Einstein-de Sitter uni- 
verse, essentially our ¤ = 1 case. Gott predicted that the 
asymptotic density profile would have p oc r-9/4. However, his 
numerical simulations produced p oc r-2 8. The extended flat 
rotation curves of spiral galaxies (Rubin, Ford, and Thonnard 
1980; Krumm and Salpeter 1980) imply the presence of halos 
with p ccr~ 2. This led Gunn (1977) to extend Gott’s study to 
more general initial-mass profiles in an attempt to discover 
conditions compatible with a final halo with p ccr~2. Gunn’s 
analytic treatment is in some respects similar to the asymptotic 
theory presented in § III of our paper. However, he explicitly 
assumed that each particle’s apapsis reaches a final value which 
is a fixed fraction of the turnaround radius. We find this 

log( r/R ) 
Fig. 12.—Spherical symmetry: profile of mass per unit solid angle for 

several e-values. Dashed lines show predicted power-law slopes for e < § and 
for e = 1.0. 
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Filmore & Goldreich (1984) 
Bertschinger (1985)

3. Overview of halo formation history

shell crossing

(Violent) relaxation 
Self-similar structure 
Cuspy protohalos

C. Self-similar phaseB. Post-collapse phaseA. Pre-collapse phase

e.g.  
Effective theory

e.g. 
Self-similar model

Zel’dovich solution 
Perturbation theory

single stream multi stream
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Carrasco et al. (2012)
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3. Overview of halo formation history
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Fig. 2.— Density profiles of one of the most and one of the least massive halos in each series. In

each panel the low-mass system is represented by the leftmost curve. In the SCDM and CDMΛ

models radii are given in kpc (scale at the top) and densities are in units of 1010M!/kpc3. In all

other panels units are arbitrary. The density parameter, Ω0, and the value of the spectral index, n

is given in each panel. Solid lines are fits to the density profiles using eq. (1). The arrows indicate

the value of the gravitational softening. The virial radius of each system is in all cases two orders

of magnitude larger than the gravitational softening.

C. Self-similar phase D. Evolution towards 
a dynamical atractor

(Violent) relaxation 
Self-similar structure 
Cuspy protohalos

B. Post-collapse phaseA. Pre-collapse phase

e.g.  
Effective theory

e.g. 
Self-similar model

Zel’dovich solution 
Perturbation theory

single stream multi stream

Navarro, Frenk & White (1996, 1997)

Baumann et al. (2012) 
Carrasco et al. (2012)

Zel’dovich (1970) 
Shandarin & Zeldovich (1989)
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Most of the evolution of CDM is governed by 
the intricate dynamics in multi-stream phases

Zel’dovich solution 
Perturbation theory

Zel’dovich (1970) 
Shandarin & Zeldovich (1989)



4. How important is multi-stream region?
Diemer et al. (2017)

30 Mpc/h

15
 M

pc
/h

white circles ≒ multi-stream region

many regions of the universe are in the multi-stream phase!



5. How important is multi-stream region?

vlafroid

Simulation 
Zel'dovich

past

present

matter power spectrum phase space



6. How important is multi-stream region?
The single-stream assumption is no longer valid at late time or at small scales. 
→ the convergence of perturbative calculations is not ensured in the standard PT
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [28] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [28]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with

12

D.Blas et al. (2014)
simulation

linear theory
3-loop SPT 
(diamonds)

2-loop SPT 
(dot-dashed)

1-loop SPT 
(black dashed)

Bernardeau et al. (2014) 
Nishimichi et al. (2016)

coupling between large- and small-scale 
modes becomes strong at 3-loop

Eulerian PT based on the single-stream approx.
<latexit sha1_base64="7TLCLVFKBvrBUp4kL79HnZKzJJU="></latexit>

δ = δ(1) + δ(2) + · · ·



7. How important is multi-stream region?
During “C. Self-similar phase”, cuspy structure presents and survives long enough to be 
observationally relevant (e.g. enhancement of the dark matter annihilation signal)
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Figure 1. Prompt cusp formation in a numerical simulation. This figure shows the density profile
produced by a peak that collapses at z = 87. A ω → r

→1.5 density cusp develops immediately. By
z = 85 (blue curve), it already closely matches the amplitude predicted from the properties of the
initial linear density field (dashed line extending between the predicted rcore and rcusp; this is not a
fit), and by z = 73, it also matches the predicted size. This prompt cusp persists at the center of the
developing halo even at the later redshift z = 37 (blue curve), when accretion has built up a density
profile of NFW form (dotted curve) at larger radii. The inset plot shows the radial profile of the
initial density peak at the much earlier redshift z = 1272. The fractional density contrast ε is plotted
in this case. The blue and orange vertical lines in the main plot enclose masses at z = 85 and z = 73,
respectively, that equal the masses enclosed within the lines of the same color in the inset plot. The
blue lines, in particular, emphasize how small the portion of the initial density peak is that sets the
amplitude of the prompt cusp.

forces. The cusp is 10 times larger in radius by z = 73 (orange curve) but still maintains the
amplitude set during the initial collapse. At a later redshift z = 37 (green curve), accretion
has built up an NFW profile at larger radii (dotted curve), but the prompt cusp persists
unaltered at the center of the system.

This behavior is the basis for the universal peak-cusp connection developed by Refs. [1, 2].
Given an initial peak in the density contrast field, ε ↑ (ω ↓ ω̄)/ω̄, the prompt cusp it forms
has density profile ω = Ar

→1.5 with

A ↔ 24ω̄0a
→1.5
coll R

1.5
. (2.1)

Here, ω̄0 is the mean dark matter density today, acoll is the cosmic expansion factor at the
peak’s collapse, and R ↑ |ε/↗

2
ε|

1/2 is the peak’s characteristic comoving size. This cusp
extends out to a radius

rcusp ↔ 0.11acollR. (2.2)

Finally, there is an interior radius rcore at which the ω = Ar
→1.5 cusp gives way to a central

core [2]. This feature is enforced by Liouville’s theorem, which implies that the maximum
phase-space density fmax, set in the early universe, cannot be exceeded anywhere in later
nonlinear structures [35]. For dark matter that decoupled from the radiation while it was
nonrelativistic at scale factor akd and temperature Tkd,

fmax = (2ϑ)→3/2(mω/Tkd)
3/2

ω̄0a
→3
kd , (2.3)

– 3 –

White (2022), Sten Delos & White (2023)

Still little theoretical work on prompt cusps;  
how they emerge dynamically?  
how stable they are against halo mergers?



8. Rise of Vlasov-Poisson simulations
Parallel 6D Vlasov-Poisson solver (the only publicly available CDM Vlasov-Poisson simulation)

T.Sousbie and S.Colombi (2016), S.Colombi(2021)

Yoshikawa, Yoshida & Umemura (2013), Yoshikawa et al. (2020)

The Astrophysical Journal, 762:116 (18pp), 2013 January 10 Yoshikawa, Yoshida, & Umemura

Figure 5. Test 1: the relative errors of the kinetic energy (upper panel) and the mass (lower panel).

Figure 6. Test 2: phase space density in the run with k/kJ = 0.5 at t = 1.0 T (left), 2.0 T (middle), and 3.0 T (right).
(A color version of this figure is available in the online journal.)

The computational domain of the two-dimensional phase
space is set to be

{−L/2 ! x ! L/2
−V ! v ! V

, (37)

where V is defined as V = L/T and T is the dynamical time
defined by

T = (Gρ̄)−1/2. (38)

The number of grid points is 128 in both x- and v-directions
unless otherwise stated.

Since we impose the periodic boundary conditions, the
wavenumber must be set to k = nk0, where k0 = 2π/L and n
is a positive integer, and the velocity dispersion σ is determined
such that the ratio k/kJ is adjusted to have a specific value. In the
following, the wavenumber is fixed to k = 2k0 (n = 2) unless
otherwise stated. We show the results for k/kJ = 0.1, 0.5, 1.1,
and 2.0. The amplitude of the initial density perturbation A is
set to A = 0.1 for k/kJ > 1 and A = 0.01 for k/kJ < 1.
Figure 6 shows the phase space density for the case with
k/kJ = 0.5 at t = T , 2 T , and 3 T . In this case, as expected, the
density fluctuation grows monotonically, and collapsed objects
are formed through the gravitational instability. Contrastingly,
the density fluctuation is damped through the Landau damping
in the run with k/kJ = 1.1, as can be seen in Figure 7.

Figure 8 shows the time evolution of the amplitude of the
density fluctuation δ ≡ (ρ − ρ̄)/ρ̄ for k/kJ = 0.1, 0.5, 1.1, and
2.0, where the amplitude is expressed in terms of the Fourier
amplitude An which is given by

δ(x, t) =
∑

m!0

Am(t) exp (imk0x) . (39)

The time evolution of |A2(t)/A2(0)| is plotted in Figure 8. We
also check the convergence of the solution by doubling the
resolution in the velocity space. The results from the runs with
Nv

x = 64 and Nv
x = 128 are also compared in Figure 8.

The linear growth (or damping) rate γ can be computed using
the dispersion relation

k2

k2
J

= 1 + wZ(w), (40)

where Z(w) is the plasma dispersion function

Z(w) = 1√
π

∫ ∞

−∞
ds

e−s2

s − w
(41)

and w is given by

w = ±iγ√
8πGρ(k/kJ)

. (42)

6

For “wam” case:

2D simulation (4D phase space)
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10. Lagrangian perturbation theory (LPT)

: displacement fieldΨ
O

q x(q, t) = q + Ψ(q, t)
Ψ(q, t)

trajectory of a fluid element 
Zel'dovich (1970), Shandarin and Zel'dovich (1989), Bouchet et al, 
(1992), Buchert (1992), Bouchet et al. (1994), Bernardeau (1994), ...

Equation of Motion:

Poisson equation:

Perturbative expansion :

: initial positionq
<latexit sha1_base64="DCEMpVZBu886LDV9K54oVOnlKJM="></latexit>

Ψ̈+ 2HΨ̇ = − 1

a2
∇xφ(x)

<latexit sha1_base64="ry6iD2bs6j33EHRj/w+8LTPoBt4="></latexit>

∆xφ(x) = 4πGρ̄a2δ(x)

<latexit sha1_base64="MoBY4msEj1XGcQy5tci8EKbc3pQ="></latexit>

Ψ(q, t) =
∞X

n=1

(a(t))n Ψ(n)(q)

C.Rampf (2012), V.Zheligovsky & U.Frisch (2014), T.Matsubara (2015)

<latexit sha1_base64="b/1iLSOHah/Ay30yG48bupjRXNg="></latexit>

1 + δ =
1

J
<latexit sha1_base64="5AGLXCHj8MKKXQKo0CZQ46StCms="></latexit>

J = det

����
∂xi(q)

∂qj

����

formally solved by LPT recurrence relaton



11. Tests of Lagrangian Perturbation Theory

[1] Representative of high density peak in the realistic universe

F.Moutarde et al. (1991), T.Buchert et al. (1997)

[2] Easy to solve the recurrence relation 
→ LPT solutions up to eg, ~ 50LPT - 1000LPT

Small density peak at the origin
<latexit sha1_base64="BGFue3CM206dzUM7NdJvlYKuVYY="></latexit>

φ(q) = −εx cos qx − εy cos qy − εz cos qz

<latexit sha1_base64="IcP2/MIkrP7422uanh3qJ837O7s="></latexit>x

<latexit sha1_base64="To2SQA646PEDTo5inU4nwhYV/w4="></latexit>

δ

[3] Quantitative analysis of various collapse conditions
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12. Phase-space structure at shell crossingA&A proofs: manuscript no. ms_collapse

Fig. 2. Phase-space structure for two and three sine waves initial conditions at collapse time: Q1D-2SIN (top left), ANI-2SIN (center left), SYM-
2SIN (bottom left), Q1D-3SIN (top right), ANI-3SIN (center right), and SYM-3SIN (bottom right). The intersection of the phase-space sheet with
the y = 0 plane for two sine waves and y = z = 0 hyper-plane for three sine waves is displayed in (x, vx) subspace. Simulation results are compared
to standard LPT predictions, that are supplemented with the blue line, denoted by “EXT”, which corresponds to the formal extrapolation to infinite
order proposed by STC18 and sketched in Sec. 4.1 for the collapse time. For completeness, the quasi one-dimensional approach (Rampf & Frisch
2017), denoted by Q1D, is also presented (see Appendix C for details).

(e.g., Rampf 2019), and the analyses of RH21 suggest that the
velocity blows up when convergence is lost. The exact proper-
ties of the spike we observe in our numerical data, in particular,
whether the velocity diverges or remains finite, and, whether if
finite, the velocity is actually smooth at the fine level, remain un-
known. While this spike is not present in the LPT predictions at
finite order, it is well reproduced by the formal extrapolation to
infinite order. This is a hint that convergence of the LPT series
might be lost at collapse for SYM-3SIN.

A question might arise whether, because of such a spike
and because of their highly contrasted nature, close to axial-
symmetric 3D configurations correspond to a potentially di↵er-
ent population of protohaloes. A partial answer can be found
in C21, who followed numerically the evolution of the three
sine-wave configurations further in the non-linear regime. As de-
scribed in C21, collapse of our protohaloes is followed by a vio-
lent relaxation phase leading to a power-law profile ⇢(r) / r�↵,
with ↵ 2 [1.5, 1.7] and then by relaxation to an NFW like uni-
versal profile. After violent relaxation, C21 did not find specific
signatures in the density profile nor the pseudo phase-space den-
sity for the axial-symmetric case compared to the non-axial-
symmetric ones, except that ↵ tends to augment when going

from Q1D to axial-symmetric, and that the axial-symmetric con-
figuration is subject to significant (and expected) radial orbit in-
stabilities.

To complete the analyses, note that the formal extrapolation
of LPT to infinite order matches well (but not perfectly) the sim-
ulation results for all the configurations, as already found by
SCT18 in the three-dimensional case. We also notice that the
quasi one-dimensional approach of RF17 can describe very well
the quasi-1D configurations. Interestingly, at the second order in
the transverse fluctuations considered here, the predictions are
rather similar to those of standard 4th-order LPT, irrespective of
initial conditions. Thus, as expected, the quasi one-dimensional
approach becomes less accurate when the ratio ✏2D or ✏3D ap-
proaches unity, particularly in 3D as already shown by STC18.

4.3. Radial profiles

We now focus on radial profiles, and define Eulerian polar
and spherical coordinates for two and three sine waves ini-
tial conditions by (x, y) = (r cos ✓, r sin ✓) and (x, y, z) =
(r sin ✓ cos �, r sin ✓ sin �, r cos ✓), respectively. Then the angular
averaged radial profiles of the density ⇢/⇢̄, velocity dispersion
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B. Post-collapse phase



13. Singularity SS, Taruya, Colombi (2022) 
Rampf, SS, Taruya, Colombi (2023)

Now focus on the pancake collapse (Q1D/ANI) 
(collapse along x axis)

Singular surface
<latexit sha1_base64="+atDVT5TZqzODy4jcXaqNHQHCJ0="></latexit>

J = det

����
∂xi(q)

∂qj

���� = 0

Taylor expansion of the displacement field around the initial singularity point

S. Saga et al.: The gravitational force field of proto-pancakes
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y

z
y = y0

x
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(y, z) = (y0, z0)

x
(y, z) = (y0, z0)

qx

x0

qx,1(x0,y0,z0)

qx,3(x0,y0,z0)

qx,2(x0,y0,z0)

(A) (B)

y = y0

Fig. 1. Schematic representation of caustic structure shortly after shell-crossing. (A) Left: schematic representation of a three-dimensional Eu-
lerian caustics shortly after shell-crossing along x-axis direction, together with a two-dimensional slice with y = y0 (light-red plane). Right: the
intersection of the caustic surface with the slice (red curve), also shown in the left panel. (B) Schematic representation of the x-component of the
Lagrangian coordinate qx as a function of the Eulerian coordinate x for fixed (y0, z0) (solid blue line). Given x0, the solution of the three-value
problem x(qx) = x0 is given by qx,n(x0, y0, z0) for n = 1, 2, and 3, as in Eq. (41).

Additional constraints can be obtained from the expression of
the Jacobian determinant, J = det @x/@q at leading order in q,
which reads

J '
1
2

(1 +  010)(1 +  001)
⇣
�2h +  120q2

y +  102q2
z +  300q2

x

⌘
.

(29)

From catastrophe theory (see, e.g., Hidding et al. 2014; Feld-
brugge et al. 2018, and references therein), the caustic surface
should be an ellipsoid outside of which the Jacobian determinant
must have a positive value J > 0, so we impose

 120 > 0,  102 > 0,  300 > 0. (30)

Finally, the smallness of the h parameter induces an addi-
tional simplification of Eqs. (23)–(25) if one supposes that La-
grangian coordinates are restricted to lie in the neighbourhood
of the pancake, i.e. qx ⇠ qy ⇠ qz ⇠ O(h1/2) from Eq. (29). In this
case, one realizes that, when examining Eqs. (23)–(25),

x(q) = O(h3/2), (31)

y(q) ' (1 +  010)qy + O(h3/2), (32)

z(q) ' (1 +  001)qz + O(h3/2), (33)

which implies |x| ⇠ O(h3/2) ⌧ |y|, |z| ⇠ O(h1/2), a signature of
the pancake nature of the system: the extension of the caustic
region along the x-axis is asymptotically infinitely smaller than
that along the other axes in the limit h ! 0, as illustrated by
panel (A) of Fig. 1. Accordingly, inside and in the vicinity of
the caustic region, we can ignore the higher-order terms in the
expressions of y and z, and reduce Eqs. (23)–(25) to

x(q) ' (1 +  100)qx +
1
2

⇣
 120 q2

y +  102 q2
z

⌘
qx +

1
6
 300 q3

x, (34)

y(q) ' (1 +  010)qy, (35)
z(q) ' (1 +  001)qz. (36)

Eqs. (34)–(36) represent our starting point to derive the x-
component of the gravitational force inside a pancake.

3.2. The three value problem

Despite its apparent simplicity, Eq. (14) is not easily exploitable
when it comes to estimate the gravitational force analytically,
even with as simple expressions as Eqs. (34)–(36). Indeed, al-
though the multi-stream nature of the flow does not appear ex-
plicitly in the integral (14), we shall see in Sect. 3.3 that the
calculation of the x-component of the gravitational force still re-
quires solving the three-valued problem implicit in Eqs. (34)–
(36), that is finding q given x.

From Eqs. (35) and (36), we trivially obtain

qy =
y

1 +  010
, qz =

z
1 +  001

. (37)

The calculation of qx(x) is more complex because it requires
solving the following cubic equation, as illustrated by panel (B)
of Fig. 1,

q3
x + 3A(y, z) qx + 2B(x) = 0, (38)

where we defined

A(y, z) =
1
 300

0
BBBBB@�2h +  120

 
y

1 +  010

!2

+  102

 
z

1 +  001

!21CCCCCA ,

(39)

B(x) = �
3x
 300
. (40)

The roots of cubic Eq. (38) are given by (see e.g., Abramowitz
& Stegun 1972)

qx,n(x) = !n�1 �A(y, z)
⇣p

D(x) � B(x)
⌘1/3 + !

4�n
⇣ p

D(x) � B(x)
⌘1/3
,

(41)

for n = 1, 2, and 3. Here, the factor! is one of the complex cubic
roots of unity, i.e., ! = (�1 ± i

p
3)/2, which are the solutions

of !2 + ! + 1 = 0. We define the discriminant D(x), which
determines the properties of the roots (41), by (e.g., Abramowitz
& Stegun 1972)

D(x) = (A(y, z))3 + (B(x))2. (42)
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e.g., Sikivie 1998, 1999; Charmousis et al. 2003; Onemli 2006;
Natarajan & Sikivie 2006, 2007; Du↵y & Sikivie 2008; Onemli
& Sikivie 2009; Chakrabarty & Sikivie 2018; Tam 2012) and the
calculations we perform here are analogous.

While integral (14) seems simpler to estimate than integral
(13), because it is performed in Lagrangian space, it remains
challenging to compute it analytically and the main goal of the
present work is to find explicit expressions approximating it.

Another way to estimate the gravitational acceleration con-
sists in simply computing the second time derivative of the La-
grangian displacement (provided that it is sourced by pure grav-
ity). Consider the presence of nS streams at Eulerian position x.
In this case, the acceleration can be formally written as the local
average of the time derivatives of velocities over all the streams
weighted by the density of each stream:

F(x) =
PnS

i=1 ⇢i(x)�i(x)
PnS

i=1 ⇢i(x)
, (15)

�i(x) ⌘
d(a vi(x))

dt
, (16)

where the quantities ⇢i and a vi stand for the density and pecu-
liar velocity of ith stream, respectively. If one has access to the
exact solution of the dynamics, this expression is somewhat triv-
ial since, in this case, �i(x) = � j(x), i , j. On the other hand,
if the accelerations in Eq. (15) are given by second time deriva-
tives of the LPT displacement computed at some order, the force
in Eq. (15) does not generally agree with Eq. (14) applied to the
same displacement field, even in the single stream regime. In-
deed, the LPT solutions are derived not by directly solving the
Poisson equation as in Eq. (14) but by perturbatively solving the
Lagrangian equations of motion.

Equation (14), which is strongly nonlinear in essence as it
can account accurately of multistreams, acts as a resummation
of the LPT acceleration: it is expected to provide a more accu-
rate prediction of the gravitational force field than the second
time derivative of the LPT displacement. However, as long as
the LPT series converges, we expect the higher-order LPT ac-
celeration to converge to the force given by Eq. (14) in the single
stream regime, and this property will turn out to be useful even in
the multistream regime when estimating the gravitational force
orthogonal to the shell-crossing direction (coplanar with the pan-
cake) by using Eq. (15).

3. Analytical predictions for the gravitational force

In this section, we aim to compute the gravitational force shortly
after the first shell-crossing in three-dimensional space. As de-
tailed in Sect. 3.1, we restrict to the formation of a symmetric
pancake seeded by a locally axisymmetric motion. The calcu-
lation of the component of the force along the shell-crossing di-
rection is the most challenging. However, after Taylor expanding
the Lagrangian displacement field around the singularity just af-
ter shell-crossing, it turns out to be very similar to the pure one-
dimensional case already treated in Gurevich & Zybin (1995);
Colombi (2015); Taruya & Colombi (2017); Rampf et al. (2021).
In particular it involves the resolution of a three-value problem
related to the three flows inside the proto-pancake, as detailed in
Sect. 3.2. The expression for the force along the shell-crossing
direction is given in Sect. 3.3. In this subsection, we also argue
that the force field in the transverse direction should not be sig-
nificantly a↵ected by the multi-stream nature of the flow, which
will allow us to estimate it directly as the second time derivative
of the displacement estimated with high-order LPT.

3.1. Main assumptions

In what follows, the calculations are all performed in 3D space,
but the extension to 2D is straightforward by ignoring or setting
to zero all the contributions depending on z. We also suppose
that the first shell-crossing takes place at the origin, q = x =
0, along the x-axis direction, and also that the system exhibits
locally axisymmetric dynamics. This setup, illustrated by Fig. 1,
seemingly appears to be very particular, but locally represents
the expected motion around high peaks of a Gaussian random
field (see e.g., Bardeen et al. 1986).

Axisymmetric dynamics translates as follows on the dis-
placement  (q):

 x(qx, qy, qz) =  x(qx,�qy, qz) =  x(qx, qy,�qz)
= � x(�qx, qy, qz), (17)

 y(qx, qy, qz) =  y(qx, qy,�qz) =  y(�qx, qy, qz)
= � y(qx,�qy, qz), (18)

 z(qx, qy, qz) =  z(�qx, qy, qz) =  z(qx,�qy, qz)
= � z(qx, qy,�qz). (19)

Here and hereafter, we omit the time dependence in the nota-
tions. Expanding these functions around the origin q = 0, we
have

 x(q) =
X

i, j,k=0

 2i+1 2 j 2k

(2i + 1)!(2 j)!(2k)!
q2i+1

x q2 j
y q2k

z , (20)

 y(q) =
X

i, j,k=0

 2i 2 j+1 2k

(2i)!(2 j + 1)!(2k)!
q2i

x q2 j+1
y q2k

z , (21)

 z(q) =
X

i, j,k=0

 2i 2 j 2k+1

(2i)!(2 j)!(2k + 1)!
q2i

x q2 j
y q2k+1

z , (22)

with  i j k being some functions of time. Substituting Eqs. (20)–
(22) into Eq. (3), and neglecting O(q4) and higher order terms,
we obtain

x(q) ' (1 +  100) qx +
1
2

⇣
 120 q2

y +  102 q2
z

⌘
qx +

1
6
 300 q3

x, (23)

y(q) ' (1 +  010) qy +
1
2

⇣
 012 q2

z +  210 q2
x

⌘
qy +

1
6
 030 q3

y , (24)

z(q) ' (1 +  001) qz +
1
2

⇣
 201 q2

x +  021 q2
y

⌘
qz +

1
6
 003 q3

z . (25)

While this local representation of the motion is minimal, it
remains accurate shortly after collapse as illustrated by Ap-
pendix A .

We now write the necessary conditions that the coe�cients in
Eqs. (23)–(25) must satisfy for a pancake to exist near the origin.
It is important to note that these conditions do not necessarily
imply that a halo subsequently forms, this would require more
restrictive constraints.

Since we consider a system in which first shell-crossing just
took place along the x-direction at q = 0, we impose

@x(0)
@qx

⌘ �h = 1 +  100 < 0, 0 < h ⌧ 1, (26)

@y(0)
@qy

= 1 +  010 > 0, (27)

@z(0)
@qz

= 1 +  001 > 0. (28)
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Fig. 1. Schematic representation of caustic structure shortly after shell-crossing. (A) Left: schematic representation of a three-dimensional Eu-
lerian caustics shortly after shell-crossing along x-axis direction, together with a two-dimensional slice with y = y0 (light-red plane). Right: the
intersection of the caustic surface with the slice (red curve), also shown in the left panel. (B) Schematic representation of the x-component of the
Lagrangian coordinate qx as a function of the Eulerian coordinate x for fixed (y0, z0) (solid blue line). Given x0, the solution of the three-value
problem x(qx) = x0 is given by qx,n(x0, y0, z0) for n = 1, 2, and 3, as in Eq. (41).

Additional constraints can be obtained from the expression of
the Jacobian determinant, J = det @x/@q at leading order in q,
which reads

J '
1
2

(1 +  010)(1 +  001)
⇣
�2h +  120q2

y +  102q2
z +  300q2

x

⌘
.

(29)

From catastrophe theory (see, e.g., Hidding et al. 2014; Feld-
brugge et al. 2018, and references therein), the caustic surface
should be an ellipsoid outside of which the Jacobian determinant
must have a positive value J > 0, so we impose

 120 > 0,  102 > 0,  300 > 0. (30)

Finally, the smallness of the h parameter induces an addi-
tional simplification of Eqs. (23)–(25) if one supposes that La-
grangian coordinates are restricted to lie in the neighbourhood
of the pancake, i.e. qx ⇠ qy ⇠ qz ⇠ O(h1/2) from Eq. (29). In this
case, one realizes that, when examining Eqs. (23)–(25),

x(q) = O(h3/2), (31)

y(q) ' (1 +  010)qy + O(h3/2), (32)

z(q) ' (1 +  001)qz + O(h3/2), (33)

which implies |x| ⇠ O(h3/2) ⌧ |y|, |z| ⇠ O(h1/2), a signature of
the pancake nature of the system: the extension of the caustic
region along the x-axis is asymptotically infinitely smaller than
that along the other axes in the limit h ! 0, as illustrated by
panel (A) of Fig. 1. Accordingly, inside and in the vicinity of
the caustic region, we can ignore the higher-order terms in the
expressions of y and z, and reduce Eqs. (23)–(25) to

x(q) ' (1 +  100)qx +
1
2

⇣
 120 q2

y +  102 q2
z

⌘
qx +

1
6
 300 q3

x, (34)

y(q) ' (1 +  010)qy, (35)
z(q) ' (1 +  001)qz. (36)

Eqs. (34)–(36) represent our starting point to derive the x-
component of the gravitational force inside a pancake.

3.2. The three value problem

Despite its apparent simplicity, Eq. (14) is not easily exploitable
when it comes to estimate the gravitational force analytically,
even with as simple expressions as Eqs. (34)–(36). Indeed, al-
though the multi-stream nature of the flow does not appear ex-
plicitly in the integral (14), we shall see in Sect. 3.3 that the
calculation of the x-component of the gravitational force still re-
quires solving the three-valued problem implicit in Eqs. (34)–
(36), that is finding q given x.

From Eqs. (35) and (36), we trivially obtain

qy =
y

1 +  010
, qz =

z
1 +  001

. (37)

The calculation of qx(x) is more complex because it requires
solving the following cubic equation, as illustrated by panel (B)
of Fig. 1,

q3
x + 3A(y, z) qx + 2B(x) = 0, (38)

where we defined

A(y, z) =
1
 300

0
BBBBB@�2h +  120

 
y

1 +  010

!2

+  102

 
z

1 +  001

!21CCCCCA ,

(39)

B(x) = �
3x
 300
. (40)

The roots of cubic Eq. (38) are given by (see e.g., Abramowitz
& Stegun 1972)

qx,n(x) = !n�1 �A(y, z)
⇣p

D(x) � B(x)
⌘1/3 + !

4�n
⇣ p

D(x) � B(x)
⌘1/3
,

(41)

for n = 1, 2, and 3. Here, the factor! is one of the complex cubic
roots of unity, i.e., ! = (�1 ± i

p
3)/2, which are the solutions

of !2 + ! + 1 = 0. We define the discriminant D(x), which
determines the properties of the roots (41), by (e.g., Abramowitz
& Stegun 1972)

D(x) = (A(y, z))3 + (B(x))2. (42)
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A2 caustics (fold)

A3 caustics (cusp)
Arnold et al. (1982), Arnold (1983), Hidding (2014), 
Feldbrugge et al. (2018), Feldbrugge & Weygaert (2024)
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Catastrophe theory

Caustics develop after shell-crossing

Simple analysis of singularity:
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lerian caustics shortly after shell-crossing along x-axis direction, together with a two-dimensional slice with y = y0 (light-red plane). Right: the
intersection of the caustic surface with the slice (red curve), also shown in the left panel. (B) Schematic representation of the x-component of the
Lagrangian coordinate qx as a function of the Eulerian coordinate x for fixed (y0, z0) (solid blue line). Given x0, the solution of the three-value
problem x(qx) = x0 is given by qx,n(x0, y0, z0) for n = 1, 2, and 3, as in Eq. (41).

Additional constraints can be obtained from the expression of
the Jacobian determinant, J = det @x/@q at leading order in q,
which reads

J '
1
2

(1 +  010)(1 +  001)
⇣
�2h +  120q2

y +  102q2
z +  300q2

x

⌘
.

(29)

From catastrophe theory (see, e.g., Hidding et al. 2014; Feld-
brugge et al. 2018, and references therein), the caustic surface
should be an ellipsoid outside of which the Jacobian determinant
must have a positive value J > 0, so we impose

 120 > 0,  102 > 0,  300 > 0. (30)

Finally, the smallness of the h parameter induces an addi-
tional simplification of Eqs. (23)–(25) if one supposes that La-
grangian coordinates are restricted to lie in the neighbourhood
of the pancake, i.e. qx ⇠ qy ⇠ qz ⇠ O(h1/2) from Eq. (29). In this
case, one realizes that, when examining Eqs. (23)–(25),

x(q) = O(h3/2), (31)

y(q) ' (1 +  010)qy + O(h3/2), (32)

z(q) ' (1 +  001)qz + O(h3/2), (33)

which implies |x| ⇠ O(h3/2) ⌧ |y|, |z| ⇠ O(h1/2), a signature of
the pancake nature of the system: the extension of the caustic
region along the x-axis is asymptotically infinitely smaller than
that along the other axes in the limit h ! 0, as illustrated by
panel (A) of Fig. 1. Accordingly, inside and in the vicinity of
the caustic region, we can ignore the higher-order terms in the
expressions of y and z, and reduce Eqs. (23)–(25) to

x(q) ' (1 +  100)qx +
1
2

⇣
 120 q2

y +  102 q2
z

⌘
qx +

1
6
 300 q3

x, (34)

y(q) ' (1 +  010)qy, (35)
z(q) ' (1 +  001)qz. (36)

Eqs. (34)–(36) represent our starting point to derive the x-
component of the gravitational force inside a pancake.

3.2. The three value problem

Despite its apparent simplicity, Eq. (14) is not easily exploitable
when it comes to estimate the gravitational force analytically,
even with as simple expressions as Eqs. (34)–(36). Indeed, al-
though the multi-stream nature of the flow does not appear ex-
plicitly in the integral (14), we shall see in Sect. 3.3 that the
calculation of the x-component of the gravitational force still re-
quires solving the three-valued problem implicit in Eqs. (34)–
(36), that is finding q given x.

From Eqs. (35) and (36), we trivially obtain

qy =
y

1 +  010
, qz =

z
1 +  001

. (37)

The calculation of qx(x) is more complex because it requires
solving the following cubic equation, as illustrated by panel (B)
of Fig. 1,

q3
x + 3A(y, z) qx + 2B(x) = 0, (38)

where we defined

A(y, z) =
1
 300

0
BBBBB@�2h +  120

 
y

1 +  010

!2

+  102

 
z

1 +  001

!21CCCCCA ,

(39)

B(x) = �
3x
 300
. (40)

The roots of cubic Eq. (38) are given by (see e.g., Abramowitz
& Stegun 1972)

qx,n(x) = !n�1 �A(y, z)
⇣p

D(x) � B(x)
⌘1/3 + !

4�n
⇣ p

D(x) � B(x)
⌘1/3
,

(41)

for n = 1, 2, and 3. Here, the factor! is one of the complex cubic
roots of unity, i.e., ! = (�1 ± i

p
3)/2, which are the solutions

of !2 + ! + 1 = 0. We define the discriminant D(x), which
determines the properties of the roots (41), by (e.g., Abramowitz
& Stegun 1972)

D(x) = (A(y, z))3 + (B(x))2. (42)
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Fx(x) ' � 4⇡G⇢̄a2

(1 +  010)(1 +  001)

h
qx,1(x) + qx,2(x)� qx,2(x)

i

SS, Colombi, Taruya (2023) 
SS, Colombi, Taruya, Rampf, Parichha [in prep.]Focus on the pancake collapse

Shortly after shell crossing, dynamics of CDM is reduced to solving cubic equation

We derive a simple analytic formula for the multi-stream force 

✔︎ Good agreement with Vlasov-Poisson simulations



15. 3D post-collapse perturbation theory (PCPT)
Assuming the collapse is pancake, we develop 3D post-collapse perturbation theory (PCPT)

We solve the cubic equation to incoorporate the multi-stream force 
then, the LPT motion is perturbatively corrected

SS, Colombi, Taruya, Rampf, Parichha [in prep.]

✔︎ PCPT qualitatively improves the phase-space prediction

see Colombi (2015), Taruya & Colombi (2017), Rampf, Frisch & Hahn (2021) for 1D case
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Preliminary



16. 3D PCPT (density)
SS, Colombi, Taruya, Rampf, Parichha [in prep.]

✔︎ PCPT also improves the prediction of density fields

Preliminary



C. Self-similar phase



17. Demo. 2D Vlasov-Poisson simulations

Abineet Parichha , Stephane Colombi , Shohei Saga and Atsushi Taruya: Dark matter halo dynamics in 2D Vlasov Simulations:

Fig. 8. Superposition of position-time (top) and phase-space (bottom) trajectories of particles of Lagrangian slices along x axis from all the
snapshots (where a fit could converge) after being scaled w.r.t turnaround computed using equations (8) and (9) using the best fit M0(ω) obtained
from fitting r → q curves (refer fig. 4) in sec. 4.1. Zoomed panels of the central regions in phase space have also been added. Self-similar solutions
for ω = 0.8, 0.7, 0.5 corresponding to Q1D (left), ANI (middle) and SYM (right) are shown in red.

4.5. Transverse motion and anisotropy parameter

To corroborate our hypothesis that non-radial dynamics cause
particle trajectories in the interior of halos to deviate from FG so-
lutions, we probe the extent of transverse motion and anisotropy
in our simulations.

Fig. 9 shows the x→ y trajectories of particles with initial po-
sitions along different directions in the three simulations. For the
SYM case, only the particles starting along x = 0, x = y, y = 0
directions have completely radial trajectories. The other trajec-
tories, while being mostly radial, do show deviations. For ANI
and Q1D cases, only the particles starting along axial directions
are radial. Q1D being the most asymmetrical has non-axial tra-
jectories exhibiting the greatest extent of transverse motion.

To determine the region of the halos where transverse mo-
tion starts to be significant, we look into the anisotropy param-
eter which is defined as ε(r) = 1 → ϑ2

↑(r)/ϑ2
r
(r), where ϑ↑,ϑr

are the transverse and radial velocity dispersions respectively.
For radial orbits, ϑ2

↑ = 0 =↓ ε = 1. For virialised or-
bits, ϑ2

↑ = ϑ
2
r
=↓ ε = 0. The higher the value of ε, the

more radial the particle trajectories and hence, we would ex-
pect better fits to FG solutions. Fig. 10 shows the radial profile
of the anisotropy parameter for the three simulations at several
snapshots. The decrease of ε from 1 to 0 as we move inwards
suggests that in the outer region, the dynamics is dominated
by radially infalling matter, whereas in the inner region, due
to isotropisation in velocity space, the particle trajectories have
a non-negligible transverse component. To estimate the radius

rtrans inside which transverse motion starts to be significant, sig-
moid fits to the radial profile of anisotropy parameter were made
for each snapshot and rtrans was determined using ε(rtrans) = 0.5.
The fits were made in the range 0.0005 ↔ r / aL ↔ 0.2. The
grey regions denote the ranges of values of rtrans over all the
snapshots in each simulation. The key observation is that the
transition from ε = 1 to ε = 0 happens at correspondingly
smaller radii the closer the simulation is to circular symmetry i.e.
rtrans/aL ↗ [0.08, 0.1], [0.01, 0.04], [0.005, 0.02] for Q1D, ANI
and SYM respectively. Also, note the unusually high value of ε
at r < rtrans for Q1D. Since Q1D deviates the most from circu-
lar symmetry, one would expect greater isotropisation in velocity
space close to the center and hence, lower ε, which is not what
we observe. One hypothesis could be that the Q1D particles in-
deed show a greater extent of transverse motion till they undergo
the first crossing along the x-axis, after which, they move more
or less along the y-axis and their collapse into the center of the
halo (shell-crossing along the y-axis) is more radial than that of
the ANI particles, leading to a higher value of ε in the central re-
gion. It does not seem to be a numerical artifact like the resonant
modes since its extent rtrans/aL ↘ 10→1 far exceeds the extent of
the resonant modes r/aL ↘ 1 → 2 ≃ 10→3

In actual CDM cosmologies seeded by Gaussian random
fields, the collapse of initially overdense perturbations leading
to the formation of halos is better modelled by ellipsoidal in-
stead of spherical collapse and the particles exhibit significant
non-radial motion as well. Such halos would be closer in resem-
blance to the Q1D than the SYM case. Therefore, a self-similar
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Parichha, Colombi, SS, Taruya (2025)

Density field Particle trajectory

A self-similar structure becomes evident after 3–4 oscillations

Abineet Parichha , Stephane Colombi , Shohei Saga and Atsushi Taruya: Dark matter halo dynamics in 2D Vlasov Simulations:

Fig. 1. Density colormaps of our numerically simulated halos. In the left column, we have Q1D simulation snapshots for the expansion factors
a = 0.055, 0.26, 0.7. In the middle, we have ANI simulation snapshots for a = 0.05, 0.125, 0.42. In the right column, we have SYM simulation
snapshots for a = 0.045, 0.1, 0.32. The top row consists of the closest available snapshots after the first shell crossing in each of the simulations
and the bottom row consists of the last available snapshots.

whose vertices [x(t), v(t)] are then evolved according to the La-
grangian equations of motion (3). The matter is linearly dis-
tributed inside each simplex instead of being transported by the
vertices, unlike the N-body approach. For more details on refine-
ment and measurements, refer to Sousbie & Colombi (2016) and
Saga et al. (2022).

We choose to study highly symmetric cases, where the dis-
placement field Ψ is initialised by sine waves with amplitudes

(ωx, ωy) along x and y axes:

x(q, t) = q +Ψ(q, t), (5)

Ψi(q, tini) =
L

2ε
D+(tini) ωi sin

(
2ε
L

qi

)
, (6)

where q is the comoving initial position, D+ is the linear growth
factor, L is the comoving size of the simulation box with pe-
riodic boundaries and i is an index for x, y. The three sets of
(ωx, ωy) = (-18, -3), (-18, -12), (-18, -18) are used to set the ini-
tial conditions for the simulations, which we denote as quasi-1D
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time evolution

-> smooth connection between PCPT and the self-similar solution is expected!

PCPT works very well just after shell-crossing
We want to connect “B. Post-collapse phase” to “C. Self-similar phase”



Summary



single stream multi streamshell crossing

C. Self-similar phase D. Evolution towards 
a dynamical atractorB. Post-collapse phaseA. Pre-collapse phase

The rise of Vlasov-Poisson simulation -> Multi-stream dynamics will be further understood

Theoretical work will be further needed complementary to Vlasov-Poisson simulations -> PCPT

✔︎ Extending to specific dark matter candidates or warm case would be doable  
    -> comparing with observations in future for studying nature of dark matters

e.g., 2-point statistics, halo innner structure from lensing, annihilation 
signal from survived prompt cusp, and so on…




