Gravitational-wave Observations and Detector Improvements

Keiko Kokeyama Nagoya University, KMI, & Cardiff University The 6th KMI International Symposium

Contents

- Introduction
- Summary of GW observations far
- Gravitational Waves Detectors
- Detector Science at Nagoya

Gravitational Waves

Dynamic distortions of the spacetime

- Emitted when heavy masses move at accelerated speed
- Propagates at the speed of light
- The distortion of the spacetime is extremely tiny
- (so it took 100 years to detect)

Video Credit: LIGO-VIRGO

Worldwide Detector Network

Observation Timeline

The First Detection

- First gravitational-wave observation
- Waveform did not contradict with General Relativity (even under the strong gravity of BHs)
- First observation of a binary black holes
- First observation of a binary black hole merger
- First confirmation of the existence of 30 M_{\bigodot} black hole

3/7/2025

Observing Run 2

- GW170817 (1.1 1.6 Msol, 40 Mpc)
- The first NS merger observed by the GW
- The EM counterpart confirmed a connection between the NS merger, kilonova and gamma-ray burst
- The speeds of the GW and light agreed (supporting General Relativity, ruling out some alternative gravity theories)
- Provided an independent Hubble parameter measurement (70⁺¹²₋₈kms⁻¹Mpc⁻¹)

Observing Run 3

- NSs at the mass gap
- Masses not clear whether NS or BH
- Asymmetry mass binary (1:30)

 Mass ~ 120 Msol (not allowed by a normal stellar evolution)

O4 is Running Now (planned total 22 months)

- O4a : 2023/5/24 2024/1/16
- O4b: 2024/4/10 planned 2025/6
- The number of public alerts so far is ~200, getting a candidate every 2-3 days!
- Advanced VIRGO is running at ~80 Mpc
- KAGRA detector plans to join the last few months of O4 at 10 Mpc

3/7/2025

Key to Operation: Interferometer Control

Distances between the mirrors must be controlled so that the laser light resonates in the cavity. We control them in the order of the laser wevelength (1064nm)

Cycles of Detector Upgrades

image credit: LIGO/Virgo/KAGRA

Detector Sensitivity (O3 to O4)

Planned Detector Commissioning for O5

- Period: from later 2025 (likely from 2026) for about 2 years
- The design sensitivity will be achieved
- Higher laser power (Max 750 kW), Test mass replacements (new coating), Balanced homodyne readout scheme
- Expected sensitivity approx. 300 Mpc for BNS mergers
- Advanced VIRGO will also be upgraded

K Tsuji, NU master thesis (2025) L Barsotti, LIGO-T1800042-v5 E Goetz LIGO-G2100675

Thermalized Interferometer (Nagoya research)

Thermal lens

- Thermal lens is formed inside the mirror substrate and changes the cavity geometry
- The interferometer control is disabled as the interferometer mirrors are warmed up.
- Working on the ifo model to be able to tune the controls, incl. thermal actuators

K Tsuji, NU master thesis (2025)

Next-gen Ground-based Detectors

40 km, large masses, higher power

10 km, a pair of detectors with a high power one and low power and cryogenic one

x10 sensitivity at all frequencies, enabling the observation beyond the local universe R&Ds are funded in the US, UK, and elsewhere; Prototype in Netherland Also, LIGO India (copy of aLIGO) is funded and to be constructed

3/7/2025