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Introduction

2MLST 2 021001

• Machine learning (ML) is becoming more and more 
popular, HEP/LHC/ATLAS no exception


• Better algorithms → improved sensitivity to new physics

arXiv: 2303.15061

FTAG-2023-01

https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
https://arxiv.org/abs/2303.15061
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


ML in HEP

3PhysRevD.109.054009

• HEP trends in ML towards bigger and more complicated models, more computing


• → Majority of ML in physics is  
“off detector” 

• System latency/resource limits are  
typically soft (if at all)


• No radiation


• Issues do not impact data  
collection


• Can re-run  
algorithms/workflows Larger

Better

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.109.054009


LHC Data Processing / Readout

• Level-1 Trigger (FPGAs, ASICs) - O(μs) hard latency


• High Level Trigger (CPUs, GPUs, FPGAs?) - O(100 ms) soft latency


• Offline (CPUs, GPUs) → >1 s latencies
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Most ML @ LHC lives here



LHC Data Processing / Readout

• Level-1 Trigger (FPGAs, ASICs) - O(μs) hard latency


• High Level Trigger (CPUs, GPUs, FPGAs?) - O(100 ms) soft latency


• Offline (CPUs, GPUs) → >1 s latencies
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If we don’t identify 
interesting events here 
we lose them forever!



What is an FPGA?
• Field-Programmable Gate Array


• Building blocks:


• Multiplier units (DSPs) [arithmetic] 

• Look Up Tables (LUTs) [logic] 

• Flip-flops (FFs) [registers] 

• Block RAMs (BRAMs) [memory] 

• Algorithms are wired onto the chip


• Can only use the resources  
on the chip


• Run at high frequency:   
hundreds of MHz,  
O(ns) runtime
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Xilinx Virtex Ultrascale+ VU13P 
12288 Multipliers


1.7M LUTs

3.4M FFs


95 Mb BRAM



What is a Neural Network?
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Inference on FPGAs
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Up to >10k parallel operations! 
(#Multiplication Units)



Inference on FPGAs
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Up to >10k parallel operations! 
(#Multiplication Units)



• hls4ml is a software package for automatically creating implementations of 
neural networks for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/ [arXiv:1804.06913]


• pip installable


• Supports common layer architectures and model software (keras, tensorflow, 
pytorch, ONNX)


• Converts model to High-Level Synthesis (HLS) for use with FPGA vendor-
specific tools (eg. Vitis HLS)


• Active development of new architectures, related techniques
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/1804.06913.pdf


• NNs:


• Boosted Decision Trees (BDTs):


• Different tools have different methodology, target different designs/problems


• Entirely non-exhaustive list…

Many Other Tools

11

arXiv: 2004.03021

arXiv: 2002.02534 arXiv: 2104.03408

arXiv: 2305.19455

(?)



ATLAS Applications
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LAr Peak Finding
• ATLAS LAr calorimeter needs to measure  

time and energy of pulses


• Overlapping pulses difficult for simple,  
fast algorithms to handle (150 ns = 6 BXs)


• CNN and LSTM architectures both able to significantly  
improve performance


• Well-suited for data structure, able to account for non-linear 
correlations

132111.08590, ATLAS LAr Public Results

https://arxiv.org/pdf/2111.08590
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade


LAr Peak Finding
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• ATLAS LAr calorimeter needs to measure  
time and energy of pulses


• Overlapping pulses difficult for simple,  
fast algorithms to handle (150 ns = 6 BXs)


• CNN and LSTM architectures both able to significantly  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• Tau leptons decay to hadrons ~65% of time (τh)


• Difficult to distinguish from hadronic jets


• Need to combine information from multiple different subdetectors


• Critical for many signals, eg. HH→bbττ


• BDT developed for identification of hadronic taus from energy in specific 
regions of calorimeters (+ total energy)


• Translated to firmware with conifer ( )
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ATLAS L1Calo Trigger Public Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t


Particle Tracking

16ATL-ITK-PROC-2022-006 

• Tracking is an incredibly hard problem, tracking 
in HLT even harder


• Huge combinatorics, only going to get worse


• Graph neural networks (GNNs) show promise  
for HL-LHC


• ~2.7 x 105 nodes, ~1.3 x 106 edges

https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf


GNN Tracking
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• Pipeline from raw hits to track candidates 
involves multiple steps


• Complicated workflow, large networks


• Pruning (removing nodes of network) one 
potential option for reducing size 


• Especially effective for inference on FPGAs ATL-COM-DAQ-2024-004 
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No pruning, 
full offline

https://cds.cern.ch/record/2888383/files/ATL-COM-DAQ-2024-004.pdf


Fast b-tagging
• Many complex downstream tasks rely on tracks


• b-tagging most notable, very complex offline algorithms


• Fast Deep Impact Parameter Sets (fastDIPS) developed as 
possible fast preselection algorithm


• QDIPS is a small quantized version of DIPS for use on FPGAs


• Able to maintain near full 
performance w.r.t fastDIPS


• Options to trade off FPGA 
resources and algorithm 
latency 

• DIPS architecture (DeepSets) 
also applicable to many other 
tasks

18ATL-COM-DAQ-2024-102 

https://cds.cern.ch/record/2912199


• What if we don’t know exactly what we are looking for?


• ML offers unique solution to this challenge (no traditional alternative)


• Broad field of anomaly detection (AD)

Anomaly Detection
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L1 Trigger AD
• Depending on anomaly, we could have none left in recorded data


• Low-latency ML on FPGAs is the only option! (eg. autoencoders)
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L1 Trigger AD
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• CMS has already deployed multiple AD algorithms in trigger


• AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA 
[CMS DP-2023/086]


• Currently collecting interesting events that would have been 
missed


• Development ongoing in ATLAS as well, expect to deploy this year!



Conclusions
• Increasingly possible and necessary to perform 

real time ML in LHC experiments


• Many more developments than I could show, 
especially for future (HL-LHC)!


• eg. Next Generation Triggers (NGT) [see here]


• ML offers improved performance over traditional 
algorithms


• Advancing ML off-detector brings better 
alignment of offline and online algorithms


• Has the potential to enable discovery of new 
physics!


• Applications in many other fields, areas too
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https://indico.cern.ch/event/1387540/contributions/6185554/attachments/2950847/5187037/WP2Report.pdf


BACKUP
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What is a Neural Network?
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ML Size / Complexity
• Regardless of toolkit, big limitation of doing ML fast is device size


• Bigger device → more resources → more computation → larger ML models


• Alternatively, is it possible to reduce network size without hurting performance?


• Pruning and quantization are two potential ways
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Xilinx Virtex Ultrascale+ VU13P 
12288 Multipliers


1.7M LUTs

3.4M FFs


95 Mb BRAM



• Are all the pieces a given network necessary?


• Many different types of pruning


• Structured vs. unstructured


• Multiplications by 0 can be completely 
removed from FPGA design

Pruning
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Quantization
• FPGAs are well suited to fixed-point numbers, not 

floating point


• Number of bits can be adjusted as needed (impacts 
accuracy, performance, resources)


• Can greatly reduce number of bits needed by training 
with knowledge of quantization

# of bits # of bits



Reuse
• For lowest latency, 

compute all 
multiplications at once


• Reuse = 1 (fully parallel) 
→ latency = # layers)


• Larger reuse implies more 
serialization


• Allows trading higher 
latency for lower resource 
usage
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Layer 1 Layer 2



hls4ml Workflow
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Inference on FPGAs
Inputs

Outputs

• Each part of network 
must be placed on the 
FPGA, connected 
together


• Cannot implement an 
algorithm if there are no 
resources left


• Cannot just run things 
slower (25 ns!)


