

ML on FPGA **Developments in ATLAS**

Dylan Rankin [UPenn]

KMI2025 : The 6th KMI International Symposium

March 7th, 2025

- popular, HEP/LHC/ATLAS no exception

ML in HEP

- → Majority of ML in physics is "off detector"
 - System latency/resource limits are typically soft (if at all)
 - No radiation
 - Issues do not impact data collection
 - Can re-run algorithms/workflows

• HEP trends in ML towards bigger and more complicated models, more computing

PhysRevD.109.054009

- Level-1 Trigger (FPGAs, ASICs) O(µs) hard latency
- High Level Trigger (CPUs, GPUs, FPGAs?) O(100 ms) soft latency

Offline (CPUs, GPUs) $\rightarrow >1$ s latencies

Most ML @ LHC lives here

LHC Data Processing / Readout 100 kHz Trigger **40 MHz** 1 us 1 ns Level-1 Trigger (FPGAs, ASICs) - O(µs) hard latency High Level Trigger (CPUs, GPUs, FPGAs?) - O(100 ms) soft latency

• Offline (CPUs, GPUs) $\rightarrow >1$ s latencies

1 ms

If we don't identify * interesting events here we lose them forever!

1 s

What is an FPGA?

- Field-Programmable Gate Array
- Building blocks:
 - Multiplier units (DSPs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- Algorithms are wired onto the chip
 - Can only use the resources on the chip
- Run at high frequency: hundreds of MHz, O(ns) runtime

What is a Neural Network?

Inference on FPGAs

Inference on FPGAs

 \vec{x}_M

NM

output layer

Up to >10k parallel operations! (#Multiplication Units)

- hls4ml is a software package for automatically creating implementations of neural networks for FPGAs and ASICs
 - <u>https://fastmachinelearning.org/hls4ml/ [arXiv:1804.06913]</u>
 - pip installable
- Supports common layer architectures and model software (keras, tensorflow, pytorch, ONNX)
 - Converts model to High-Level Synthesis (HLS) for use with FPGA vendorspecific tools (eg. Vitis HLS)
 - Active development of new architectures, related techniques

Many Other Tools

• NNs:

arXiv: 2004.03021

Boosted Decision Trees (BDTs):

arXiv: 2002.02534

- Different tools have different methodology, target different designs/problems
- Entirely non-exhaustive list...

arXiv: 2104.03408

ATLAS Applications

LAr Peak Finding

- ATLAS LAr calorimeter needs to measure time and energy of pulses
 - Overlapping pulses difficult for simple, fast algorithms to handle (150 ns = 6 BXs)
- CNN and LSTM architectures both able to significantly improve performance
 - Well-suited for data structure, able to account for non-linear correlations

LAr Peak Finding

- time and energy of pulses
 - fast algorithms to handle (150 ns = 6 BXs)
- improve performance
 - correlations

- regions of calorimeters (+ total energy)

	_		
	I	1	Щ
-			
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
	I	I	-
	_		
വറ			
コムし	J		
	-		
)T Score			

Particle Tracking

- Tracking is an incredibly hard problem, tracking in HLT even harder
 - Huge combinatorics, only going to get worse
- Graph neural networks (GNNs) show promise for HL-LHC

GNN Tracking

- Pipeline from raw hits to track candidates involves multiple steps
- Complicated workflow, large networks
- Pruning (removing nodes of network) one potential option for reducing size
 - Especially effective for inference on FPGAs

Fast b-tagging

- Many complex downstream tasks rely on tracks
 - b-tagging most notable, very complex offline algorithms
- Fast Deep Impact Parameter Sets (fastDIPS) developed as possible fast preselection algorithm
- QDIPS is a small quantized version of DIPS for use on FPGAs
 - Able to maintain near full performance w.r.t fastDIPS
 - Options to trade off FPGA resources and algorithm latency
- DIPS architecture (DeepSets) also applicable to many other tasks

Anomaly Detection

- What if we don't know exactly what we are looking for?
- ML offers unique solution to this challenge (no traditional alternative)
 - Broad field of anomaly detection (AD)

L1 Trigger AD

- Depending on anomaly, we could have none left in recorded data
- Low-latency ML on FPGAs is the only option! (eg. autoencoders)

ave none left in recorded data nly option! (eg. autoencoders)

L1 Trigger AD

- CMS has already deployed multiple AD algorithms in trigger
 - AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA [CMS DP-2023/086]
- Currently collecting interesting events that would have been missed
- Development ongoing in ATLAS as well, expect to deploy this year!

Conclusions

- Increasingly possible and necessary to perform real time ML in LHC experiments
- Many more developments than I could show, especially for future (HL-LHC)!
 - eg. Next Generation Triggers (NGT) [see here]
- ML offers improved performance over traditional algorithms
 - Advancing ML off-detector brings better alignment of offline and online algorithms
- Has the potential to enable discovery of new physics!
- Applications in many other fields, areas too

BACKUP

What is a Neural Network?

 $\vec{x}_1 =$ x_{1,N_1}

ML Size / Complexity

- Regardless of toolkit, big limitation of doing ML fast is device size
 - Bigger device \rightarrow more resources \rightarrow more computation \rightarrow larger ML models

Xilinx Virtex Ultrascale+ VU13P 12288 Multipliers 1.7M LUTs 3.4M FFs 95 Mb BRAM

- Alternatively, is it possible to reduce network size without hurting performance?
 - Pruning and quantization are two potential ways

Pruning

- Are all the pieces a given network necessary?
- Many different types of pruning
 - Structured vs. unstructured
- Multiplications by 0 can be completely removed from FPGA design

Quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Number of bits can be adjusted as needed (impacts accuracy, performance, resources)
- Can greatly reduce number of bits needed by training with knowledge of quantization

Reuse

- For lowest latency, compute all multiplications at once
 - Reuse = 1 (fully parallel)
 → latency = # layers)
- Larger reuse implies more serialization
- Allows trading higher latency for lower resource usage

hls4ml Workflow

Inference on FPGAs

- Each part of network must be placed on the FPGA, connected together
- Cannot implement an algorithm if there are no resources left
 - Cannot just run things slower (25 ns!)

