based on: EPJ C 83, 9 (2023) JINST 18, T02004 (2023)

OPT sitemred a to noitareqO

Marc Schumann University of Freiburg

Nagoya Workshop on future liquid noble gas detectors, 14.02.2024 www.app.uni-freiburg.de

universität freiburg

erc

Background Sources (for ton-scale detectors)

target-intrinsic bg: α -, β -, γ -radiation, n; neutrons from activation, impurities, (α,n) and sf 2νββ

muons

 (α,n) and sf

natural y-bg

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

XENONnT: Lowest ER background

PRL 129, 161805 (2022), PRD 108, 012016 (2023)

XENON WIMP Search

PRL 131, 041003 (2023)

	Expectation	Best Fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.81 ± 0.07
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.2	0.42 ± 0.10
CEvNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.011
AC	4.3 ± 0.2	4.32 ± 0.15	0.363 ± 0.013
Wall	14 ± 3	12^{+0}_{-4}	$0.34^{+0.01}_{-0.11}$
Total	154	152 ± 12	$1.95^{+0.12}_{-0.16}$
WIMP		2.4 ^{*)}	1.2 ^{*)}
Observed		152	3

152 events in ROI, 16 in blinded region Best fit indicates no significant excess

*) Assuming a 200 GeV WIMP and a best-fit $\sigma = 2.5 \times 10^{\text{-}47} \mbox{ cm}^2$

Towards the neutrino floor

universitätfreiburg M. Schumann – Hermetic TPC

The ultimate LXe WIMP Detector

Background dominated by irreducible neutrinos

Radon Background

Background goal: ER background dominated by solar neutrinos

²²²Rn emanated from all detector surfaces. Need concentration factor ~50 below XENON1T factor ~8 below XENONnT

main background challenge

Strategy

- active Rn removal via cryogenic distillation
 - → column developed for XENONnT is R&D for XLZD
- avoid Rn emanation by
 - \rightarrow optimal material production
 - → material selection
 - \rightarrow surface treatment
 - → optimized detector design

Hermetic TPC: The Concept

- Rn emanated from surfaces
- About 10x more surfaces outside of active TPC target
- In addition: all "dirty" components in outer volume (cables, HV dividers)
- Reduce Rn by mechanically separating inner and outer volumes

BUT: depart as little as possible from wellestablished, successful TPC designs

Our Design

- "Typical" TPC
 - 3 mesh electrodes
 - PTFE reflector tube
 - $-\ensuremath{\,\text{PMTs}}$ in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- LXe level controlled with weir

Our Design

- "Typical" TPC
 - 3 mesh electrodes
 - PTFE reflector tube
 - PMTs in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- Electric field homogeneity confirmed with COMSOL
- LXe level control with weir
- Valve connecting both volumes for filling and recuperation

Our Design

- "Typical" TPC
 - 3 mesh electrodes
 - PTFE reflector tube
 - PMTs in contact with target
- Sealing done via cryofitting (=exploit difference in linear expansion coefficients)
- Electric field homogeneity confirmed with COMSOL
- LXe level control with weir
- Valve connecting both volumes for filling and recuperation
- 2 independent gas systems
- Only one coldfinger, connected to inner volume
- TPC operated on Freiburg's XeBRA Test Platform

XeBRA Detector Test Platform

universität freiburg

XeBRA Detector Test Platform

universitätfreiburg

Two Gas Systems

Detector Operation

TPC Performance

Fluctuations with two gas systems

Hermeticity

- Prototype test: leak rate of seals O(10⁻²) mbar I s⁻¹ ("watertight")
- Measure Xe leak rate with ^{83m}Kr injected into inner volume via detailed model
- Leakage flow f~0.1 kg/h
 → semi-hermetic TPC

Hermeticity

- Prototype test: leak rate of seals O(10⁻²) mbar I s⁻¹ ("watertight")
- Measure Xe leak rate with ^{83m}Kr injected into inner volume via detailed model
- Leakage flow f~0.1 kg/h
 → semi-hermetic TPC
- Origin of leakage unknown.
 Scale up result to 40t-TPC assuming 3 hypotheses:
 - leak around PMTs

 \rightarrow r² ~1000

leak around electrodes

 \rightarrow r ~ 50

- leak around tubes/valve $\rightarrow \sim 1$

Scaling to G3 Detector: ²²²Rn

Scaling to G3 Detector: ²²²Rn

- Study impact of individual **Rn** parameters
- Even moderate levels of hermeticity have a significant impact

0.6

0.5

0.1

0.0[⊥] 10[−]

Goal: 0.1 µBd/kg

 10^{-1}

Great potential in combination with other Rn-abatement techniques

LXe Physics with Hermetic TPC I

LXe Physics with Hermetic TPC II

Field-dependence of light and charge yields

Conclusions

- We built and operated a small hermetic TPC following the well-established "standard" TPC design
- Achieved moderate hermeticity using cryofitting \rightarrow method not yet fully optimized \rightarrow more to be studied, also together with Nagoya
- Two independent cooling systems are required to also purify outer volume
- Hermetic TPC operates well → measurements of LXe physics
- Already moderate levels of hermeticity can significantly reduce the Rn level
- The hermetic TPC concept is a promising and straightforward approach to reduce Rn in combination with other methods → we should not miss this opportunity

universitätfreiburg M. Schumann – Hermetic TPC

EPJ C 83, 9 (2023) JINST 18, T02004 (2023)

0.1