The Feasibility of Liquid Xenon Proportional Scintillation Counter for Low-energy Physics Searches

> Kaixuan Ni, Jianyang Qi University of California, San Diego



## Single Phase Liquid Xenon Proportional Scintillation Counter (LXePSC)



Principle of a cylindrical Single-Phase LXe detector, first proposed by *Qing Lin*, JINST 16 P08011, 2021

- A Proportional Scintillation Counter-like design (thin anode wire in the center) was first proposed by Qing Lin (2102.06903, JINST 2021).
  - No liquid-gas interface: 100% electron extraction efficiency
  - S2 in LXe (~20 photon/e-) is typically much smaller than S2 in GXe: less unwanted S2 light, less dynamic range requirement for ADC
  - Weak field on the cathode: less micro discharges; anode/gate surface area is very small: less efrom metal surface
  - More photosensor coverage & no reflection at liquid/gas interface: higher light collection (lower S1 threshold, better sensitivity for low-mass DM)
  - Fast liquid-phase purification; scalability.

#### NUXE - a LXePSC for Reactor Neutrino and Light DM Searches



- NUXE is a planned reactor neutrino CEvNS experiment using ~100 kg LXe (or Xe-doped LAr) single-phase PSC
- Single-and-few e- background will need to be reduced significantly for a sensitive detection of reactor neutrinos at surface
- The same detector system can be moved underground for light dark matter search.

#### First Demonstrations of LXePSC Operation at UCSD



## **Electric field**



Field simulation is consistent with analytic field (near the center in z and r)

- Simulated charge trajectories
  - Green: Charge not reaching anode
  - Blue: Charge reached the anode
  - Red:
    - Approximate fiducial volume in z



Can the single-phase still discriminate between ER and NR?

Can the single-phase mitigate the single-electron background after a large S2?

## **ER/NR Discrimination**

#### ER/NR calibration with the 18 $\mu$ m anode

- Switched from a 10 µm to 18 µm diameter anode wire ⇒ larger gain from the same E field around the anode
  - Higher electric field in the bulk
  - Anode: 4.5 kV, Cathode: -0.6543 kV
- ➢ <sup>252</sup>Cf calibration:
  - <sup>129m</sup>Xe and <sup>131m</sup>Xe activated lines (236 and 164 keV gammas, respectively)
  - Nuclear recoil band
- > Xe activated lines:
  - High statistics
  - Cut in drift time slices to constrain the electric field for doke plot
- ≻ Tritium:
  - Gives us a measurement of ER-leakage for small g<sub>2</sub>

#### **Electron and Nuclear recoil bands**

- ➤ Cuts applied:
  - Z-cut
  - Diffusion cut
  - Multiple scatter
  - Noise/accidental coincidence
  - Undershoot cut







#### **Z-selection**

$$Asymmetry = \frac{Area_{top} - Area_{bottom}}{Area_{top} + Area_{bottom}}$$

- Top (bottom) area means the sum of the light seen by the top (bottom) four PMTs
- Used to select a range in z
- Cuts against backgrounds near top and bottom plates
- S2 asymmetry is between -0.25 and
  0.25 unless otherwise stated



## Activated xenon lines



- Clear <sup>131m</sup>Xe and <sup>129m</sup>Xe lines (164 and 236 keV respectively)
- Selected with |S2 Asymmetry| < 0.25</p>
- Sliced in drift time to constrain electric field
- $\succ$  g, measured to be ~3.3 PE/e<sup>-</sup>
- $\rightarrow$  g<sub>1</sub> approximately 0.15 PE/photon

## g<sub>1</sub>, g<sub>2</sub>, and electron lifetime



- $\succ$  g<sub>1</sub> and g<sub>2</sub> are consistent from data vs NEST prediction
- > NEST  $g_1$  and  $g_2$  are obtained from S1/n<sub>ph</sub> and S2/n<sub>e</sub>
- Electron lifetime can be estimated (with large uncertainty) using NEST



## **ER/NR** discrimination

- ➤ 1σ regions are well separated
- However: a "shower" of leakage events for both ER and NR
- Likely due to partial charge loss near CIV
- Methods to calculate leakage:
  - Direct counting
  - Gaussian fitting
  - Skew gaussian fitting



#### ER/NR discrimination: Leakage by counting

- Find NR median, count tritium events below NR median
- NR Acceptance ~ 47.5% (after data-quality cuts + NR events below median)
- Some bins have leakage < 0.01, most have leakage>0.01





### ER/NR discrimination: Charge Insensitive Volume (CIV) leakage



- Longitudinal diffusion coefficient from O. Njoya (2020)
- Transverse diffusion coefficient from EXO-200 (2017)

#### ER/NR discrimination: CIV leakage



16

#### ER/NR discrimination: CIV leakage



17

3

2

 $r^2$  [cm<sup>2</sup>]

## ER/NR discrimination: Leakage by fitting



#### ER/NR discrimination: Conclusion

- > Counting shows leakage of order  $10^{-2} \sim 10^{-3}$
- ➤ Gaussian/skew-gaussian fittings show leakage of order 10<sup>-3</sup>
- Simulation shows a significant portion of leakage events is due to CIV
  - If we design the detector, e.g. using shaping rings, to minimize CIV then we may see a reduction in the leakage from direct counting
- Single phase LXe TPC detectors using proportional scintillation are likely able to retain good ER/NR discrimination despite a low g<sub>2</sub>

## **Electron Trains in Single-phase LXe**

#### What are trains...



- Single electrons up to 1 second after a large S2 pulse (primary S2)
- Seen in dual-phase LXe TPCs (LUX, XENON1T)
- Major background for low-energy ionization-only searches
- More at tomorrow's talks for two-phase detectors

## Light emission throughout our runs



- Main limiting factor for the single-phase detector
  - Seems to be correlated with anode surface area as well as electric field
- Correlated with event rate as well (see Cs-137 curve)

## Trains in our single-phase LXe detector (18 μm anode run, g2~3.3 PE/e-)



- Rates are calculated for peaks with
  3-fold coincidence
- Delay time is time after the S2
- Clear photoemission population around 1 max drift time
- All rates decay to the same level regardless of primary S2 area
- Pileup rate calculated from PMT lone hits rate before an S1

#### Are these rates from electrons?



- Pileup area distribution calculated by randomly sampling PMT lone-hit (light emission) rates and areas
- All shaded regions are clearly different from the light emission pileup area spectrum, indicating there might be electron train component

#### Model of electron train



#### Extracting the electron portion of the trains

- Peak area distribution in each delay time bin can  $\succ$ be fit with a linear combination of the expected pileup, single electron, and double electron distribution
  - SE and DE area spectrum from simulation Ο

$$H(A) = (1 - \sum_{i=1}^{N_e} r_i) p_{pileup}(A) + \sum_{i=1}^{N_e} r_i p_{i,e}(A)$$



3-fold Coincidence

0.05

Histogram 0.03

Normalized I 0.03 0.01

0.02

0.00

2

4

6

8

Cathode photoemission

Pileup area expectation

14

16

26

Simulation SE

Simulation DE

PRELIMINARY

12

10

### Fitting the trains: Conclusion



- Pileup rate converges to the expected value after the fitting
- > Power-law decay of approximately -1 is present even in the single phase
  - Similar to dual phase xenon TPCs
  - Suggests that the origin of this background is likely in the bulk

Can the single-phase still discriminate between ER and NR?

- Yes, even with low g<sub>2</sub> the discrimination ability is still retained
- Better field cage design that minimizes the charge insensitive volume will help

Can the single-phase mitigate the single-electron background after a large S2?

- Likely no, the single-electron train with a power law of ~-1 is still present
- If due to impurities, purification technique needs to be developed (same for two-phase)

# **Backup Slides**

#### Time-dependent correction to ER and NR bands

- g, tends to drift in time
- Electron lifetime (in principle) also drifts  $\succ$
- All S2s are correction to what they would be on April  $12^{th}$  (g<sub>2</sub> =  $\succ$  $3.5 \text{ PE/e}^{-}$ , lots of activated xenon)
- NR Correction:  $\succ$ 
  - From 40 keV <sup>129</sup>Xe neutron inelastic 0
- **ER Correction:**  $\succ$ 
  - Ratio of the <sup>131m</sup>Xe S2 size from April 12<sup>th</sup> to tritium 0 calibration
- **Electron lifetime:**

sizes is 2%

Ο



CES [keV]



