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Single Phase Liquid Xenon Proportional Scintillation Counter (LXePSC)

● A Proportional Scintillation Counter-like design (thin 

anode wire in the center) was first proposed by Qing Lin 

(2102.06903, JINST 2021).

● No liquid-gas interface: 100% electron extraction 

efficiency

● S2 in LXe (~20 photon/e-) is typically much 

smaller than S2 in GXe: less unwanted S2 light, 

less dynamic range requirement for ADC

● Weak field on the cathode: less micro discharges;  

anode/gate surface area is very small: less e- 

from metal surface

● More photosensor coverage & no reflection at 

liquid/gas interface:  higher light collection 

(lower S1 threshold, better sensitivity for 

low-mass DM)

● Fast liquid-phase purification; scalability.
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Principle of a cylindrical Single-Phase LXe detector, first 
proposed by Qing Lin, JINST 16 P08011, 2021



NUXE - a LXePSC for Reactor Neutrino and Light DM Searches
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● NUXE is a planned reactor neutrino CEvNS experiment using ~100 kg LXe (or Xe-doped LAr) single-phase 
PSC

● Single-and-few e- background will need to be reduced significantly for a sensitive detection of reactor 
neutrinos at surface

● The same detector system can be moved underground for light dark matter search.  



First Demonstrations of LXePSC Operation at UCSD
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A 0.6-kg active target LXePSC

Later a 10-um anode is used. Reached 1.8 PE/e- gain. 

Jianyang Qi et al. arXiv:2301.12296, JINST 2023

Cs137

First trial: a 25-um anode is 

used, reached e- gain of 0.7 

PE/e-. 

Yuehuan Wei et al. 

arXiv:2111.09112, JINST 2022



➢ Simulated charge 
trajectories
○ Green: Charge 

not reaching 
anode

○ Blue: Charge 
reached the 
anode

○ Red: 
Approximate 
fiducial volume 
in z

Field simulation is consistent with analytic 

field (near the center in z and r)

Electric field
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Two main questions
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Can the single-phase still 
discriminate between ER and 
NR?

Can the single-phase mitigate 
the single-electron 
background after a large S2?
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ER/NR Discrimination



➢ Switched from a 10 μm to 18 μm diameter anode wire ⇒ larger gain from the 
same E field around the anode
○ Higher electric field in the bulk
○ Anode: 4.5 kV, Cathode: -0.6543 kV

➢ 252Cf calibration:
○ 129mXe and 131mXe activated lines (236 and 164 keV gammas, respectively)
○ Nuclear recoil band

➢ Xe activated lines:
○ High statistics
○ Cut in drift time slices to constrain the electric field for doke plot

➢ Tritium:
○ Gives us a measurement of ER-leakage for small g
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ER/NR calibration with the 18 μm anode
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Electron and Nuclear recoil bands

➢ Cuts applied:
○ Z-cut
○ Diffusion cut
○ Multiple scatter
○ Noise/accidental coincidence
○ Undershoot cut

S1 S2NR 
event

light emission



Z-selection

Backgrounds near top and bottom

➢ Top (bottom) area means the sum of 
the light seen by the top (bottom) 
four PMTs

➢ Used to select a range in z

➢ Cuts against backgrounds near top 
and bottom plates

➢ S2 asymmetry is between -0.25 and 
0.25 unless otherwise stated
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Activated xenon lines
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129mXe

131mXe

➢ Clear 131mXe and 129mXe lines (164 and 236 keV respectively)
➢ Selected with |S2 Asymmetry| < 0.25
➢ Sliced in drift time to constrain electric field
➢ g

2
 measured to be ~3.3 PE/e-

➢ g
1
 approximately 0.15 PE/photon 
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g
1
, g

2
, and electron lifetime

➢ g
1
 and g

2
 are consistent from data vs NEST prediction

➢ NEST g
1 

and g
2
 are obtained from S1/n

ph
 and S2/n

e
➢ Electron lifetime can be estimated (with large 

uncertainty) using NEST

PRELIM
IN

ARY

PRELIM
IN

ARY
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ER/NR discrimination

➢ 1σ regions are well 
separated

➢ However: a “shower” 
of leakage events for 
both ER and NR

➢ Likely due to partial 
charge loss near CIV

➢ Methods to calculate 
leakage:
○ Direct counting
○ Gaussian fitting
○ Skew gaussian 

fitting
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ER/NR discrimination: Leakage by counting

➢ Find NR median, count tritium events below NR 
median

➢ NR Acceptance ~ 47.5% (after data-quality cuts + 
NR events below median)

➢ Some bins have leakage < 0.01, most have 
leakage>0.01
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ER/NR discrimination: Charge Insensitive Volume (CIV) leakage

➢ Longitudinal diffusion coefficient from O. Njoya (2020)
➢ Transverse diffusion coefficient from EXO-200 (2017)

Partial charge loss
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ER/NR discrimination: CIV leakage

Simulation Simulation

Data Data

After cuts

Leakage is still present in simulation
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ER/NR discrimination: CIV leakage

Leakage events 
(below NR median) 
concentrated near 
top and bottom CIV

➢ MC truth 
positions

➢ Asymmetry cut 
applied
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ER/NR discrimination: Leakage by fitting

➢ Motivation: To estimate the ideal-case leakage
○ Ideal case: no CIV, no reconstruction effects, only 

tritium events
➢ Fit tritium events’ Log10(S2/S1) in each S1 slice with 

gaussian and skew gaussian
➢ Find fitted proportion below the NR median
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ER/NR discrimination: Conclusion

➢ Counting shows leakage of order 10-2~10-3 

➢ Gaussian/skew-gaussian fittings show leakage of order 10-3

➢ Simulation shows a significant portion of leakage events is due to CIV
○ If we design the detector, e.g. using shaping rings, to minimize CIV then we 

may see a reduction in the leakage from direct counting

➢ Single phase LXe TPC detectors using proportional scintillation are likely able to 
retain good ER/NR discrimination despite a low g

2
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Electron Trains in Single-phase LXe
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What are trains…

LUX 2020
arXiv:2004.07791

XENON1T 2021
arXiv:2112.12116

➢ Single electrons up to 1 second 
after a large S2 pulse (primary 
S2)

➢ Seen in dual-phase LXe TPCs 
(LUX, XENON1T)

➢ Major background for 
low-energy ionization-only 
searches

➢ More at tomorrow’s talks for 
two-phase detectors
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Light emission throughout our runs

➢ Main limiting factor 
for the single-phase 
detector

➢ Seems to be 
correlated with 
anode surface area 
as well as electric 
field

➢ Correlated with 
event rate as well 
(see Cs-137 curve)



23

Trains in our single-phase LXe detector (18 μm anode run, g2~3.3 PE/e-)

➢ Rates are calculated for peaks with 
3-fold coincidence

➢ Delay time is time after the S2

➢ Clear photoemission population 
around 1 max drift time

➢ All rates decay to the same level 
regardless of primary S2 area

➢ Pileup rate calculated from PMT lone 
hits rate before an S1

Maximum drift time



24

Are these rates from electrons?

➢ Pileup area distribution calculated by randomly sampling PMT lone-hit (light 
emission) rates and areas

➢ All shaded regions are clearly different from the light emission pileup area 
spectrum, indicating there might be electron train component

PRELIMINARY
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Model of electron train

Current S2 area Previous S2 
contributions

Average over 
previous S2 areas 
and time to previous 
S2s

Erlang distribution
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Extracting the electron portion of the trains

➢ Peak area distribution in each delay time bin can 
be fit with a linear combination of the expected 
pileup, single electron, and double electron 
distribution
○ SE and DE area spectrum from simulation

PRELIMINARY

PRELIM
INARY
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Fitting the trains: Conclusion

➢ Pileup rate converges to the expected value after the fitting
➢ Power-law decay of approximately -1 is present even in the single phase

○ Similar to dual phase xenon TPCs
○ Suggests that the origin of this background is likely in the bulk

PRELIMINARY PRELIMINARY



Two main questions: Summary
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Can the single-phase still 
discriminate between ER and 
NR?

Can the single-phase mitigate 
the single-electron 
background after a large S2?

➢ Yes, even with low g
2
 the 

discrimination ability is still retained
➢ Better field cage design that 

minimizes the charge insensitive 
volume will help

➢ Likely no, the single-electron train 
with a power law of ~-1 is still 
present

➢ If due to impurities, purification 
technique needs to be developed 
(same for two-phase)
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Time-dependent correction to ER and NR bands

➢ g
2
 tends to drift in time

➢ Electron lifetime (in principle) also drifts
➢ All S2s are correction to what they would be on April 12th (g

2
 = 

3.5 PE/e-, lots of activated xenon)
➢ NR Correction:

○ From 40 keV 129Xe neutron inelastic
➢ ER Correction:

○ Ratio of the 131mXe S2 size from April 12th to tritium 
calibration

➢ Electron lifetime:
○ Small difference. If τ

e
∈[90,160] μs, RMS difference of S2 

sizes is 2%

ER


