

Freiburg R&D activities:

PANCAKE- large scale test platform and Single Phase TPC

Nagoya Workshop, February 14th - 16th, 2024

Julia Müller, University of Freiburg julia.mueller@physik.uni-freiburg.de

Bundesministerium für Bildung und Forschung

Current LXe Dual-Phase Detectors & the Future

Future: e.g. DARWIN (arXiv:1606.07001)

- LXe based TPC with 2.6m
- total xenon mass of 50t at -100°C
- ultra-low background
 - \rightarrow technical realization will be challenging!!

One challenge: Electrodes

- top stack electrodes: extraction and amplification field
- cathode and gate create drift field
- high optical transparency necessary
- more material →more background

All electrodes - but different technologies

universität freiburg

Woven mesh

Many more ideas on electrodes design!

All electrodes - but different technologies

Test Platform PANCAKE

- 5t stainless steel
- double-walled cryostat

Test Platform PANCAKE

universitätfreiburg

- 5t stainless steel
- double-walled cryostat
- flat-floor design \rightarrow save xenon
- 400kg xenon (inventory)
 - liquid level: 2cm on 2.7m
 - liquid level: 6cm on 1.5m
- storage capacity: 600kg, expandable

stiffening structure for flat floor

Cooling with liquid nitrogen

Pre-cooling system of the inner cryostat:

- 6 copper plates with pipes
- cooling power of several kW

Heat load @ -100°C < 100 W

Current Instrumentation

PMT array of 19 x 3" Hamamatsu R11410-21 PMTs

heated cameras for cold xenon gas

level meter for xenon filling height

...plus PT100s, pressure sensors, scales, load cells

Slow Control

Commissioning of the Platform

- validate seal tightness of the inner cryosat, several seals tested \rightarrow **copper-wire seal**
- cooling and liquefaction ability
- test working principle of open-top vessel and liquid level

Commissioning with 300kg Xenon

- first filling 50kg xenon \rightarrow successful!
- started run with pre-cooling inner vessel \rightarrow minimize ΔT inside
- started filling once floor at -100°C
- @1.6 bar pressure \rightarrow liquefied into cold bottom feedthrough of inner vessel
- change to thermosyphon cooling \rightarrow fill bathtub

300kg Xenon Run

- filling over 4 weeks at final flow rate of 4.7slpm and pressure 1.48bar
- limit in cooling power due to surface area of copper cold head
- ΔT~ 10K

300kg Xenon Run

- filling over 4 weeks at final flow rate of 4.7slpm and pressure 1.48bar
- limit in cooling power due to surface area of copper cold head
- ΔT~ 10K while gas is actually warmer
- liquid depth of ~ 60mm on 1.46m diameter
- maximum purification flow: 15 slpm
- great pressure stability during filling and cycling thanks to active pipeline control of thermosyphon temperature

300kg Xenon Run

- filling over 4 weeks at final flow rate of 4.7slpm and pressure 1.48bar
- limit in cooling power due to surface area of copper cold head
- ΔT~ 10K while gas is actually warmer
- liquid depth of ~ 60mm on 1.46m diameter
- maximum purification flow: 15 slpm
- great pressure stability during filling and cycling thanks to active pipeline control of thermosyphon temperature
- recuperation of entire xenon over 7 days by cryogenic pumping

- 2.7m wide test platform
- flat floor design
- successfully commissioned
- arXiv:2312.14785
- working on electrodes
- to be tested in PANCAKE

Freiburg R&D activities:

PANCAKE- large scale test platform and Single Phase TPC

Dual Phase TPC:

- S2 signal generation
 - liquid level control
 - electrostatic sag
 - liquid xenon waves
- total internal reflection (reduced LCE)
- delayed electron extraction at liquid-gas interface

F. Kuger et al 2022, arXiv:2112.11844

Single Phase TPC:

fill entire TPC with liquid xenon \rightarrow avoid challenges

- create proportional scintillation in liquid xenon
- requires high fields > 400kV/cm (E.Aprile, 2014, arXiv: 1408.6206)
- thin anode wires at moderate voltages

F. Kuger *et al* 2022, arXiv:2112.11844, (modified) ³²

Single Phase TPC:

fill entire TPC with liquid xenon \rightarrow avoid challenges

- create proportional scintillation in liquid xenon
- requires high fields > 400kV/cm (E.Aprile, 2014, arXiv: 1408.6206)
- thin anode wires at moderate voltages

Freiburg's Single Phase TPC

- Dimensions:
 - 7cm height (cathode to gate)
 - 7cm diameter
 - 700g xenon target
 - 10kg total xenon mass
- top array of 7 x (1" x 1") PMTs
- 1 x 3" PMT at the bottom
- was operated as dual-phase TPC

Top Stack Design

- **cathode/screen/gate:** etched stainless steel hex.mesh (t=150um)
- anode:
 - Au-plated tungsten wire (California Fine Wire)
 - wire *∞* = 10um
 - pitch $p_A = 10mm$
 - thin wires electric fields > 400kV/cm at moderate voltage
- anode-gate potential differences $\Delta V^{}_{AG}$ in range (3.0 4.4)kV applied
- applied drift field $E_d = 470 \text{ V/cm}$

ΔV_{AG} [kV]	Surface Fields [kV/cm]
3.0	731
3.4	828
3.8	925
4.2	1023
4.4	1071

data acquisition

universität freiburg

gas purification system

data acquisition

universitätfreiburg

gas purification system

Detector Characterisation with ^{83m}Kr

Characterisation with ^{83m}Kr

correct detector response for drift-time (z) dependent effects

second S2

first S2

 10^{3}

light collection efficiency \rightarrow S1

first S1

"electron lifetime" \rightarrow S2

Corrected area [PE] universitattreiburg

second S1

 10^{2}

 10^{3}

 10^{2}

10

Signal width [ns]

g1 & g2 using ^{83m}Kr

g1: fraction of detected photons (PE/photon)

 $E = W\left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$

g2: number of detected photons per electron (PE/electron) W = 13.7 eV/quantum

g1 & g2 using ^{83m}Kr

g1: fraction of detected photons (PE/photon)

g2: number of detected photons per electron (PE/electron)

 $E = W\left(\frac{cS1}{g_1} + \frac{cS2}{g_2}\right)$

W = 13.7 eV/quantum

from Freiburg dual phase TPC: $g2 = (5.49 \pm 0.05)$ PE/electron

g1 & g2 using ^{83m}Kr

Freiburg dual phase TPC: $g2 = (5.49 \pm 0.05) PE/electron$

Freiburg single phase TPC: $g2 = (1.9 \pm 0.3) PE/e^{-} \rightarrow EL gain: (29 \pm 6) photons/e^{-}$

PANCAKE:

2.7m wide test platform
flat floor design
successfully commissioned
<u>arXiv:2312.14785</u>
working on electrodes, to be tested

Single Phase TPC:

single phase TPC successfully operated, characterized and analysed
anode with 10um Au-plated tungsten wires
proportional scintillation observed
scintillation gain of g2 = (1.9 ± 0.3) PE/e⁻

julia.mueller@physik.uni-freiburg.de