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The XENONnT experiment

Located at LNGS (~3600 mwe overburden)

Nested detector:

active muon Cherenkov veto (MV);

active neutron Cherenkov veto (NV);

dual-phase time projection chamber (TPC)

Unprecedented low ER background in ROI

(15.8 ± 1.3) events/(t·y·keV)

Gas + liquid purification system

talk by Prof. Yamashita, Friday @ 10:30
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https://doi.org/10.1103/PhysRevLett.131.041003
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Impact of the electric drift field

S2 top hit pattern → (x,y) position

Drift time → z position

S2 multiplicity → multi-scatter rejection

S2/S1 ratio → recoil type discrimination

ER beta, gamma NR neutron, WIMP
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The XENONnT TPC electric field

132.8 cm
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Top screen

Anode

Gate

Cathode

Bottom screen

Five electrodes divided into top and bottom 
stacks;

HVFT from XENON1T (tested up to -110 kV);

Parallel wire grids electrodes:

SS wires (Ø216 µm, but Ø304 µm cathode),

wires are connected via copper pins.

Field cage

HVFT
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The XENONnT TPC electrodes
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Why a field cage?

GND

Simplified example
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Why a field cage?

GND

Field cage = field shaping elements + resistive chain

Simplified example
Simplified example
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The XENONnT field cage

Two nested arrays of copper electrodes:

Guards (5 mm x 15 mm), two icositetragonal halves connected at the resistive chain location;

Rings (Ø 2 mm), touching the PTFE walls thanks to notches on the sliding reflectors.

Rings

Guards

PEEK fastener to adjust ring circumference
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The XENONnT field cage

Two nested arrays of copper electrodes:

Guards (5 mm x 15 mm), two icositetragonal halves connected at the resistive chain location;

Rings (Ø 2 mm), touching the PTFE walls thanks to notches on the sliding reflectors.

„Bite-structure“

From M. Vargas thesis Charge-up observation from XENON1T: inward 
push at panels, less at pillars;

Field cage is in contact with pillars, not with panels;

Conclusion: contact with copper helps reducing 
charge-up effect.

https://miami.uni-muenster.de/Record/619876be-47cd-4122-9ffd-b426ed212690/TOC
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The XENONnT resistive chain

Field shaping elements are connected by 5 GΩ 
resistors (two redundant resistive chains):

guards‘ chain is based on „sandwiching“ the resistors‘ 
connectors between a nut and the guard‘s copper;

rings‘ chain is based on spring-loaded connections 
using PTFE elements fixed by special notches on the 
panels.
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Field leakage through the electrodes

Simplified example
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Field leakage through the electrodes

Simplified example
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Field leakage through the electrodes

HV

HV

Simplified example
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The degrees of freedom of the field cage

Top voltage - Vtop Bottom resistor - Rbttm

• Independent HV power supply;

• tunable voltage during detector 

operation (no need to access the 

field cage).

• HV power supply required new 

feedthrough;

• effective potential achieved by 

selecting proper resistance;

• fixed at design phase.

Geometry defined by mechanical constraints (e.g., HVFT position);

Voltage partitioner (resistive chain) ensures linear potential drop;

The field can be optimized thanks to the 2 degrees of freedom of the resistive chain
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The simulations were performed using the finite element method (FEM) software COMSOL 
Multiphysics v5.4 on a 32 GB machine;

exploiting 2D-axysimmetry of the detector (custom mesh of ~5 million elements).

14.02.202417

Finite element method – COMSOL
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Optimization of the electric field

Two figures of merit:

Field spread inside a fiducial volume;
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Optimization of the electric field

Two figures of merit:

Field spread inside a fiducial volume;

Charge insensitive volume (CIV) estimated simulating 
the electrons’ propagation.
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Best-performing configuration for field spread 
resulted in >300 kg of CIV.

Selected configuration:

-950 V top voltage (+50 V w.r.t. gate)

7 GΩ bottom resistance (= -28.8 kV)

14.02.202420

The design electric field of XENONnT
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Short-circuit between cathode and bottom screen limited cathode voltage to -2.75 kV;

still possible to tune the electric field by changing the field cage top voltage!

14.02.202421

XENONnT electric field during SR0

Not tuned (Vgate = Vtop) Tuned
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83mKr is a homogeneously distributed calibration source in the active target:

ideal to study the electric field!

First check: is the „bite-structure“ still there? Yes, but inverted!

14.02.202422

83mKr calibration data: bite-structure

XENONnT

XENON1T

≠
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Expected (r,z) distribution from uniformly distributed source can be simulated using the electric 
field map and literature values for diffusion and drift speed;

comparison between data and simulation is done by comparing the radial distribution 90th

percentile along the TPC height;

no time evolution of the position distribution is observed in almost 6 months of data taking.

14.02.202423

Comparison 83mKr - simulations

DATA

SIMS

Clear mismatch
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Mismatch could be due to charge accumulation on the highly electronegative PTFE walls

charge distribution already modelled by LUX with average 3-5 μC/m² and varying over time.

Include linear surface charge density distribution on the PTFE walls in the simulation.

Charge distribution parameters from chi-square minimization of radial 90th percentile distribution 
along z.

14.02.202424

Charge accumulation on PTFE walls
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https://iopscience.iop.org/article/10.1088/1748-0221/12/11/P11022
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Charge accumulation on PTFE walls

Much better agreement between simulated (r,z) position distribution and observed one;

new field map including linear charge accumulation along PTFE walls.

CIV = 112 kg
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In XENON1T the measurement of electron lifetime showed a dependence on the source;

explained as an effect of the non-uniformity of the electric field + source dependence of charge 
yield.

14.02.202426

Testing our field knowledge: e-lifetime

83mKr

222Rn

Phys. Rev. D 100, 052014 (2019)
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Testing our field knowledge: e-lifetime

We can use the field map and the charge yield Qy from NEST to obtain the physical e-lifetime.
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Source-dependence both without field correction and using the field map w/o charge 
accumulation on the PTFE walls;

good agreement among sources when using new field map!

14.02.202428

Testing our field knowledge: e-lifetime
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Source-dependence both without field correction and using the field map w/o charge 
accumulation on the PTFE walls;

good agreement among sources when using new field map!

14.02.202429

Testing our field knowledge: e-lifetime
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Conclusion

Innovative field cage design

Field understanding

Dual-array for copper-PTFE contact

no time evolution of charge accumulation observed

Independently biased field cage

tuning of the electric field

Charge accumulation from comparison of simulations to
83mKr (r, z)-position distribution

Resolved source-dependence of electron lifetime measurement
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Recombination of electrons and ions leads to excited states, hence scintillation. A stronger electric 
field increases the charge yield (freed electrons) at the expenses of the light yield.

14.02.202432

Charge/light yield

NEST v2.3.6
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Sectional view of the XENONnT field cage

Icositetragon (24-gon) ≃ circle
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The field cage of XENONnT
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The impact of several effects was considered for the electric field simulations:

concentric wire grids, with an effect of 0.4% within an arbitrary small FV;

polygonal TPC, <1% effect when comparing different TPC radii;

LXe dielectric constant, <1% when considering different literature values.

14.02.202435

Systematic checks of simulations
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Bottom resistance for different voltages

For lower absolute voltages at the 

cathode it is not possible to tune Vtop

in order to recover the same field 

performance as for design voltage.

As the anode voltage changes, it is 

possible to tune Vtop and retrieve an 

almost identical performance of the 

field as for design.
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Custom module

Optimized with the „just-in-time“ compiler numba

Diffusion coefficients and drift speed values from literature

14.02.202437

PyCOMes

https://github.com/ftoschi/PyCOMes
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Uniform distribution of initial positions of 
electrons within the TPC;

propagate each electron following the drift field 
(PyCOMes module) and including drift speed 
and diffusion;

consider final radial position to determine (x, y) 
and drift speed as proxy for z;

include position reconstruction resolution as 
gaussian smearing.

14.02.202438

Simulation of position distribution

e-

TrueObserved
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The expected position distribution and associated 90th percentile along z is evaluated for 
different combinations of (σtop, λ);

Chi-square is calculated for each configuration

14.02.202439

Charge accumulation on PTFE walls
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Charge accumulation on walls: uncertainties

Systematic uncertainties

• Change z-binning

• Change percentile 

Statistical uncertainties

For each combination (σtop, λ) the 

simulated position distribution is 

resampled 1000 times and the χ² 

distribution is newly estimated. The 

distribution of the best-matching 

configurations returns the uncertainty on 

each parameter.



Francesco Toschi – Design and performance of the XENONnT TPC electric field Institute of Astroparticle Physics (IAP)

After SR0 a dedicated test (< 1 day) of the bias voltage of the top of the field cage was 
carried on during a 83mKr calibration.

The bias voltage Vtop was changed from 300 V (gate voltage) up to 1000 V: this has a 
small impact on the intensity of the field, but a large impact on its spread.

We want to compare our predictions to the observations regarding:

charge-insensitive volume;

position distribution;

electron lifetime.

14.02.202441

Testing the field cage
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Testing the field cage: CIV

S1-, S2-, and event-rate (paired S1+S2) follow simulations:

as voltage increases, CIV increases keeping the S1 rate unaffected, while S2 rate decreases;

disagreement with simulations above 750 V shows room for improvement, but overall 
understanding of detector physics.
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Testing the field cage: position distribution

Observed a change in the (r, z)-position distribution for different voltages;

good agreement with simulations when including the same wall charge distribution from SR0:

surface charge density is not affected by field cage tuning;

agreement worsens above 750 V.
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Testing the field cage: electron lifetime

Measured electron lifetime clearly shows a dependence on the homogeneity of the electric field;

when correcting for the corresponding field map, an agreement among different measurements 
is recovered: physical electron lifetime!
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