

XENON

Design and performance of the XENONnT TPC electric field

Francesco Toschi 14.02.2024 – Nagoya (online) Nagoya Workshop on Technology and Instrumentation in Future Liquid Noble Gas Detectors

Eur. Phys. J. C 84, 138 (2024)

www.kit.edu

The XENONnT experiment

XENON

- Located at LNGS (~3600 mwe overburden)
- Nested detector:
 - active muon Cherenkov veto (MV);
 - active neutron Cherenkov veto (NV);
 - dual-phase time projection chamber (TPC)
- Unprecedented low ER background in ROI
 - (15.8 ± 1.3) events/(t·y·keV)
- Gas + liquid purification system
 talk by Prof. Yamashita, Friday @ 10:30

The XENONnT experiment

XENON

- Located at LNGS (~3600 mwe overburden)
- Nested detector:
 - active muon Cherenkov veto (MV);
 - active neutron Cherenkov veto (NV);
 - dual-phase time projection chamber (TPC)
- Unprecedented low ER background in ROI
 (15.8 ± 1.3) events/(t·y·keV)
- Gas + liquid purification system
 - talk by Prof. Yamashita, Friday @ 10:30

Impact of the electric drift field

- S2 top hit pattern \rightarrow (x,y) position
- Drift time \rightarrow z position
- S2 multiplicity → multi-scatter rejection
- **S2/S1** ratio \rightarrow recoil type discrimination

The XENONnT TPC electric field

- Five electrodes divided into top and bottom stacks;
- HVFT from XENON1T (tested up to -110 kV);
- Parallel wire grids electrodes:
 - SS wires (Ø216 µm, but Ø304 µm cathode),
 - wires are connected via copper pins.

The XENONnT TPC electrodes

The XENONnT TPC electric field

- Five electrodes divided into top and bottom stacks;
- HVFT from XENON1T (tested up to -110 kV);
- Parallel wire grids electrodes:
 - SS wires (Ø216 µm, but Ø304 µm cathode),
 - wires are connected via copper pins.

Karlsruher Institut für Technologie

Why a field cage?

Why a field cage?

Field cage = field shaping elements + resistive chain

The XENONnT field cage

Two nested arrays of copper electrodes:

- *Guards* (5 mm x 15 mm), two icositetragonal halves connected at the resistive chain location;
- **Rings** (Ø 2 mm), touching the PTFE walls thanks to notches on the sliding reflectors.

The XENONnT field cage

Two nested arrays of copper electrodes:

- *Guards* (5 mm x 15 mm), two icositetragonal halves connected at the resistive chain location;
- **Rings** (Ø 2 mm), touching the PTFE walls thanks to notches on the sliding reflectors.

"Bite-structure"

- Charge-up observation from XENON1T: inward push at panels, less at pillars;
- Field cage is in contact with pillars, not with panels;
- Conclusion: contact with copper helps reducing charge-up effect.

The XENONnT resistive chain

Field shaping elements are connected by 5 G Ω resistors (two redundant resistive chains):

- guards' chain is based on "sandwiching" the resistors' connectors between a nut and the guard's copper;
- rings' chain is based on spring-loaded connections using PTFE elements fixed by special notches on the panels.

Field leakage through the electrodes

Institute of Astroparticle Physics (IAP)

13 14.02.2024 Francesco Toschi – Design and performance of the XENONnT TPC electric field

Field leakage through the electrodes

Field leakage through the electrodes

The degrees of freedom of the field cage

- Geometry defined by mechanical constraints (e.g., HVFT position);
- Voltage partitioner (resistive chain) ensures linear potential drop;
- The field can be **optimized** thanks to the 2 degrees of freedom of the resistive chain

Top voltage - V_{top}

- Independent HV power supply;
- tunable voltage during detector operation (no need to access the field cage).

Bottom resistor - R_{bttm}

- HV power supply required new feedthrough;
- effective potential achieved by selecting proper resistance;
- fixed at design phase.

Finite element method – COMSOL

- The simulations were performed using the finite element method (FEM) software COMSOL Multiphysics v5.4 on a 32 GB machine;
- exploiting 2D-axysimmetry of the detector (custom mesh of ~5 million elements).

Optimization of the electric field

- Two figures of merit:
 - Field spread inside a fiducial volume;

Optimization of the electric field

- Two figures of merit:
 - Field spread inside a fiducial volume;
 - Charge insensitive volume (CIV) estimated simulating the electrons' propagation.

XENONnT electric field during SR0

Short-circuit between cathode and bottom screen limited cathode voltage to -2.75 kV;
 still possible to tune the electric field by changing the field cage top voltage!

^{83m}Kr calibration data: bite-structure

- ^{83m}Kr is a homogeneously distributed calibration source in the active target: ideal to study the electric field!
- First check: is the "bite-structure" still there? Yes, but inverted!

 10^{-4}

50

≠

XENON1T

Rate [Hz/b

0

-25

-50

-75

-50

0

 $x_{\rm obs}$ [cm]

Comparison ^{83m}Kr - simulations

- Expected (r,z) distribution from uniformly distributed source can be simulated using the electric field map and literature values for diffusion and drift speed;
- comparison between data and simulation is done by comparing the radial distribution 90th percentile along the TPC height;
- no time evolution of the position distribution is observed in almost 6 months of data taking.

Charge accumulation on PTFE walls

- Mismatch could be due to charge accumulation on the highly electronegative PTFE walls
 charge distribution already modelled by LUX with average 3-5 µC/m² and varying over time.
- Include linear surface charge density distribution on the PTFE walls in the simulation.
- Charge distribution parameters from chi-square minimization of radial 90th percentile distribution along z.

Charge accumulation on PTFE walls

Much better agreement between simulated (r,z) position distribution and observed one;
 new field map including linear charge accumulation along PTFE walls.

- In XENON1T the measurement of electron lifetime showed a dependence on the source;
- explained as an effect of the non-uniformity of the electric field + source dependence of charge yield.

$$S2(t) = S2(0) e^{-t/\tau_{e^{-}}}$$

We can use the field map and the charge yield Q_v from NEST to obtain the physical e-lifetime.

- Source-dependence both without field correction and using the field map w/o charge accumulation on the PTFE walls;
- good agreement among sources when using new field map!

- Source-dependence both without field correction and using the field map w/o charge accumulation on the PTFE walls;
- good agreement among sources when using new field map!

Conclusion

Innovative field cage design

- Dual-array for copper-PTFE contact
 - **no time evolution** of charge accumulation observed
- Independently biased field cage
 - tuning of the electric field

Field understanding

- Charge accumulation from comparison of simulations to ^{83m}Kr (r, z)-position distribution
- Resolved source-dependence of electron lifetime measurement

 $\overline{\phi}$

Backup slides

Charge/light yield

Recombination of electrons and ions leads to excited states, hence scintillation. A stronger electric field increases the charge yield (freed electrons) at the expenses of the light yield.

Sectional view of the XENONnT field cage

Systematic checks of simulations

The impact of several effects was considered for the electric field simulations:

- **concentric wire grids**, with an effect of 0.4% within an arbitrary small FV;
- **polygonal TPC**, <1% effect when comparing different TPC radii;</p>
- **LXe dielectric constant**, <1% when considering different literature values.

Bottom resistance for different voltages

For lower absolute voltages at the cathode it is not possible to tune V_{top} in order to recover the same field performance as for design voltage.

Gate @ -1.0 kV, Cathode @ -30 kV

Anode Field spread [%] 6.5 kV 10^{1} 5.5 kV 4.5 kV 10^{0} 10³ [k] CI< [k] 101 0.0 -1.2-1.0-0.8-0.6 -0.4-0.2 0.2 V_{top} [kV]

As the anode voltage changes, it is possible to tune V_{top} and retrieve an almost identical performance of the field as for design.

PyCOMes

Custom module

- Optimized with the "just-in-time" compiler numba
- Diffusion coefficients and drift speed values from literature

Simulation of position distribution

- propagate each electron following the drift field (*PyCOMes* module) and including drift speed and diffusion;
- consider final radial position to determine (x, y) and drift speed as proxy for z;
- include position reconstruction resolution as gaussian smearing.

Charge accumulation on PTFE walls

The expected position distribution and associated 90th percentile along z is evaluated for -40 different combinations of (σ_{top}, λ) ; -80 $\frac{\left(r_{90p}^{z_i}\left(\text{data}\right) - r_{90p}^{z_i}\left(\text{sim}\right)\right)^2}{\sigma_{z_i}^2}$ -100-120 Chi-square is calculated for each configuration $\chi^2 = \sum$ -140 40 45 50 55 r [cm] χ^{2} 10⁴ Charge-insensitive mass [kg] 10⁵ 10^{3} 10^{2} 10³ 1.5 1.5 $\sigma_{\rm w}$ [µC/m²] ⊾ σ_{top} 1.0 1.0 λ [µC/m²] 0.5 0.5 0.0 0.0 -0.5-0.5-1.0 Ν -1.0Ξ -1-2 0 1 -1 0 1 σ_{top} [µC/m²] $\sigma_{top} [\mu C/m^2]$

Charge accumulation on walls: uncertainties

Systematic uncertainties

- Change z-binning
- Change percentile

Statistical uncertainties

For each combination (σ_{top} , λ) the simulated position distribution is resampled 1000 times and the χ^2 distribution is newly estimated. The distribution of the best-matching configurations returns the uncertainty on each parameter.

Testing the field cage

After SR0 a dedicated test (< 1 day) of the bias voltage of the top of the field cage was carried on during a ^{83m}Kr calibration.

The bias voltage V_{top} was changed from 300 V (gate voltage) up to 1000 V: this has a small impact on the intensity of the field, but a large impact on its spread.

We want to compare our predictions to the observations regarding:

- charge-insensitive volume;
- position distribution;
- electron lifetime.

GATE

Testing the field cage: CIV

- S1-, S2-, and event-rate (paired S1+S2) follow simulations:
 - as voltage increases, CIV increases keeping the S1 rate unaffected, while S2 rate decreases;
- disagreement with simulations above 750 V shows room for improvement, but overall understanding of detector physics.

Testing the field cage: position distribution

Observed a change in the (r, z)-position distribution for different voltages;

- good agreement with simulations when including the same wall charge distribution from SR0:
 - surface charge density is not affected by field cage tuning;
 - agreement worsens above 750 V.

Testing the field cage: electron lifetime

- Measured electron lifetime clearly shows a dependence on the homogeneity of the electric field;
- when correcting for the corresponding field map, an agreement among different measurements is recovered: physical electron lifetime!

