

Accidental pileup and low-S2 background in PandaX-4T

Speaker : Qing Lin

(On behalf of PandaX collaboration)

University of Science and Technology of China

@ Nagoya Workshop, 2024.02.15

PandaX-4T DM search experiment

Dual phase xenon TPC

PandaX collaboration

- PandaX: particle and astrophysical xenon detector
 - dark matter, Majorana neutrino, astrophysical neutrino

PandaX @ CJPL

PandaX-4T systems

 \Box Ultrapure water shield: 13 m (H) x 10 m (D) ~ 900 m³

- **TPC:** 1.2 m (H) x 1.2 m (D)
- □ 3-in PMTs: 169 top/199 bottom → See Lingyin's talk

• Sensitive volume: 3.7-tonne LXe

Some Pic

Some Pic of the subsystems

PandaX-4T DM search experiment

Timeline of PandaX-4T

- Apr. 2, 2018, permission from CJPL management to start construction in B2 hall
- Aug. 19, 2019, infrastructure completed, detector installation in CJPL-II started
- Mar 6, 2020, offline distillation of xenon completed
- May 28, 2020, installation completed
- Nov. 28, 2020 Apr. 16, 2021 (commissioning run (**Run0**)
- 2021 Summer: Tritium removal
- 2021/11 2022/05: physics run (Run1)
 - 164 days: ~ 1 tonne-year
- **2022/09** 2023/12: hall construction
 - xenon recuperation
 - detector upgraded
- 2023.11 now: Resuming

11

Background table

	Component	Nominal (evts)	Expect
	³ T (from fit to data)	532 (32)	9.8 (0.6
	Flat ER* (18-30keV side band)	492 (31)	
	Rn	347 (190)	
	Kr	53 (34)	
	Material	40 (5)	
	Xe136	31(6)	
	Solar pp neutrino	37(8)	
	Xe127	8 (1)	
	Neutron	0.9 (0.5)	
	Neutron-X	0.2 (0.1)	1.5
	Surface	0.5 (0.1)	actrons/S
	Accidental	2.4 (0.5)	og ₁₀ (nEle
	B8	0.6 (0.3)	- 0.5
	Sum	1037 (45)	

Expected below-NR-median events: 9.8 (0.6) evts

Dominant bkg component: CH3T

PandaX-4T DM search experiment

Low-energy searches

Challenges : Emerged bkg with lowered threshold

cS1 [PE]

PANDA X

Delayed electrons

Model of Accidental pileup (Especially B8 analysis)

Suppression of AC

Key cut optimization

Boosted Decision Tree (BDT)

- We observe detector "activated" after large S2s.
- Livetime and volume after a large S2 is cut to reduce AC background!

- ➢ S1 & S2 width
- Spurious charges beside S1&S2
- \succ S2 pulse shape
- Difference of reconstructed positions;
- Goodness-of-fit between data and sim;
- > Top-bottom asymmetry

CEvNS rate increases from ~1.6 to ~7.7 per year in 2.7 tonne fiducial volume

- Samples with loosened cuts are used a control samples;
- Asymmetrical uncertainty is assigned for the difference of control region w.r.t nominal;

- S2 of 40-60 PE is taken as a sideband region;
- The S2 spectrum of set 3 is taken as the MD shape;
- Difference of set4-5 minus set3 taken as nominal rate;

MD really MD?

160

S2 [PE]

It seems the delayed electrons correlated more with event rate than S2 size and Z! $_{21}$

Correlation test

SEs close to large S2 are strongly correlated with the electron lifetime;

Correlation test

- Could be due to SE-primary S2 ambiguity, quantitative analysis ongoing;
- Correlation coefficient also indicates the silent rate correlates more with event rate;
- Ripple model?

A. Kopec et al., JINST 16 P07014

Things need to be done

- Spectral shape analysis: multiple-e due to single-e pileup? Influence of photoionization.
- ➢ More fine correlation test:
 - ➢ Not run-by-run average variables;
 - ≻ Correlation with distinct S2 ranges;
- > Quantification of the SE pileup with larger S2 rates;