

Low Dark-Count VUV SiPMs for the DARWIN Experiment

K M

Shingo Kazama (KMI, Nagoya University)

Nagoya Group's R&D on New Photosensors for DARWIN

R&D on New Photosensors in Japan

- Lowest radioactivity ever achieved for LXe DM detectors
- 2. Low Dark Count VUV SiPM: This talk
- 3. Hybrid Photosensor (PMT/SiPM): See poster by Tomoya

Photocathode (converts a photon to an photoelectron) + SiPM (photoelectron detector)

PMT (R13111)

1. Ultra low-radioactive PMT: 3inch R13111 developed by XMASS: Talk by Abe-san

Nagoya Group's R&D on New Photosensors for DARWIN

	PMT	SiPM S13370 (VUV4)	Hybrid
Operation voltage	~1500V	~50V	Photocathode: < 2 kV SiPM: 50-60 V
Single Photon Gain	~5×10 ⁶	~2×10 ⁶	~2×10 ⁶
DC rate@165 K	~0.01 Hz/mm ²	~1Hz/mm²	~0.01 Hz/mm ²
Radioactivity	High	Low	Low
QE	30 - 40%	30%	30 - 40%

PMT (R13111)

Low Dark Count Lybrid-detector (PMT/SiPM) for ultra-low BG: similar to the point (Napoli)

Origins of Dark Count

1. Thermally generated carriers:

- strong temperature dependence $n_i \propto$

2. Band-to-band tunneling effect:

- weak temperature dependence

- At LXe temperature, huge DC rate is mainly due to the band-toband tunneling effect
- To suppress the tunneling effect, we have developed a new SiPM with decreased avalanche electric field with the help of Hamamatsu
 - Low doping concentration
 - Low E-field
 - Thicker depletion layer

Low Dark Count UV SiP

Changes w.r.t the original SiPM

- •Breakdown voltage becomes larger (+35V), but no signific changes in other performances.
- PDE becomes a bit smaller, but cambe compensated by increasing the operation voltage (+1V) Gain Size of photosensitive surface
- Afterpulse probablility becomes smaller because of less doping concentration.

Sensitivity to VUV light

2

3

Default

60

-5

[p.e]

100

90

80

70

	$[\mu_{1p.e.} + 4\sigma_{1p.e.}, \mu_{2p.e.} - 4\sigma_{2p.e.}]$ $[\mu_{1p.e.} - 4\sigma_{1p.e.}, \mu_{1p.e.} + 4\sigma_{1p.e.}]$	1.6 SPL-1 470nm • SPL-2 470nm 1.4 • SPL-1 630nm	
		S12572-015C-SPL	S12572-015
ant	/	New (SPL)	Default (S
	Operation Voltage	~100V	\sim 65V
	Gain@OV=5V	~1.4×10 ⁵	~2.3×1
$\sim 100 \text{ V}$	Size	3mm	x3mm
-1.4×10 ⁵ 400	Number of pixels	40	000
3 mm × 3 mm	Pixel piches	15	μm
40000	Fill factor	5	3%
53%	Package	Cer	amic
No	Trench	No t	rench
ALLA	Wavelength	300 -	900 nm

Low Dark Count UV SIPM

•We managed to reduce the DCR of UV SiPMs by a factor of 6 - 60.

140

- However, this SiPM is not sensitive to LXe scintillation light
 - its performances.

Recently we have developed a VUV-sensitive low-noise SiPM and characterized

New VUV SiPM

SiPM	S13370-3050CN (VUV4, Default)	
Operation Voltage	40-50 V	
Active Area	3×3 mm ²	
Number of pixels	14400	
Pixel size	50×50 μm²	
Fill factor (next page)	58%	74%

•Breakdown voltage becomes larger (+40V) as observed in UV SiPMs

•Our previous measurements indicates reducing DCR may worsen PDE. Therefore, Hamamatsu optimized fill factor and managed to increase the PDE

Setup

- Low-temperature in vacuum (controlled between 150 and 210 K)
- · 2 samples for each pixel sizes
- Digitizer: CAEN V1751 (1GHz sampling)
- \cdot Temperature was stable with < 0.1K fluctuation during all the measurements

Single-Photon Response

	Over- voltage	New 100 µm	New 50 µm	VUV-4 50 μm
	3 V	1.6	0.6	1.0
1pe Gain [×10 ⁶]	5 V	2.6	1.0	1.7
	7 V	3.6	1.4	2.4
breakdow @ 165	n voltage K [V]	84.4	83.4	44.4

- •No significant changes in waveform shapes
- Breakdown voltage increased by 40V
- •1PE gain becomes smaller at the same over-voltages, but still it has $\sim 10^6$ gain

100

Breakdown Voltage vs Voltage

Dark Count Rate: 50um pixel

	DCR [Hz/mm ²]	Reduction w.r.t. VUV4
New-1 (50um)	0.049 – 0.073	13 - 16%
New-2 (50um)	0.060 – 0.087	15 - 20 %

•Dark count rate (DCR) at high temperature(200-210K) was measured with random trigger because of its large DCR

•DCR at low temperature was measured using self-trigger with the threshold of 0.5 pe pulse height.

Reached DCR of O(0.01) Hz/mm2 for 50um pixel size

180 190 160 200 170 Dark Count Rate: 50 & 100um pixel

- •DCR for 100um pixel is ~1.6 times higher than that for 50um pixel when compared at the same over-voltages.

•Both 50/100 pixel SiPMs have almost the same DCR at the same gain of 1e6 (~ 0.05 Hz/mm²)

•However, 50 and 100 um pixel have different 1PE gain/PDE. Therefore, DCR should be compared at the same 1PE gain or PDE.

What's the Impact on Accidental Coincidence Rate (Lone-S1 Rate)

- •Lone-S1 rate @ XENONnT is O(1) Hz, originating from interactions below cathode/CIV or shadow effect
- N-fold requirement might be improved from 7-fold to 4-fold with the SiPM we developed
 - •100 nsec coincidence window is assumed
- If we use SiPMs for the top array only, this effect (and eCT) should have less impact.

	PMT 0.01 Hz/mm ²	New 0.049 Hz/mm ²	VU\ 0.3 Hz/
3-fold	2.2 Hz	~700 Hz	~1.0×1
4-fold	-	~10 Hz	~1.0×1
7-fold	-	-	~3 F

•Assuming SiPMs are used for both the top/bottom arrays @ DARWIN, ~73,000 channels (12×12 mm²) are needed

•DCR contribution to lone-S1 rate is negligible in XENONnT because low DCR for PMT (0.01 Hz/mm²)

Cross-talk Probability

- As expected, cross-talk probability for VUV4 and new SiPMs seems almost the same at the same 1PE gain.
- nearby SPADs.)
- •No significant temperature dependence was observed.

•100 um pixel has less cross-talk probability because it has larger active area (smaller chance for infrared photons to propagate to

14

Afterpulse Probability

 $N(1pe) = [\mu - 4\sigma(1pe), \mu + 4\sigma(1pe)]$

 $N(AP) = [\mu + 4\sigma(1pe), 2\mu - 4\sigma(2pe)]$

$$P(AP) = N(AP) / N(2)$$

- •AP probability for new SiPM is smaller at the same 1PE gain, probably due to lower dope concentration.
- •100 um pixel seems to have less AP probability
- •No significant temperature dependence was observed.

Summary

- •We have developed a low-DC VUV SiPM and characterized its performance.
- •We managed to reach DCR of O(0.01) Hz/mm² for both 50 and 100 um pixel sizes.

	DCR [Hz/mm²] 50 um	DCR [Hz/mm ²] 100 um
Sample1 (OV=3-5V)	0.049 – 0.073	0.076 - 0.094
Sample2 (OV=3-5V)	0.060 – 0.087	0.078 - 0.098

- •According to Hamamatsu, they can further optimize the configuration to reduce DCR.
- •Thanks to the optimization of fill factor, new SiPMs have reasonable PDE of 20 35 % depending on pixel size
- •We will measure the absolute PDE of new SiPMs at LXe temperature and compare with Hamamatsu measurements.

MIGN ENERGY CO. DARTICLE

Backup

SHIC RAT ACCELERATOR

Rate of n pmts over m PMTs

In this scenario we are counting PMTs. If a PMT got 2 hits, it will be counted as "1".

The probability that a PMT didn't trigger is: $p_0 = pig(0|\muig) = e^{-\mu}$

The probability of exactly n PMTs triggering is the probability that n triggered, and (m-n) did not trigger: $p_n = \frac{m!}{(m-n)! \cdot n!} \cdot (1-p_0)^n \cdot p_0^{m-n}$ So....

$$\Gamma_n^m = \Gamma_1^m \cdot p_{n-1} = m \cdot \Gamma \cdot \frac{(m-1)!}{(m-n)! \cdot (n-1)!} \cdot (1-p_0)^{n-1} \cdot p_0^{m-n} = m \cdot \Gamma \cdot \frac{(m-1)!}{(m-n)! \cdot (n-1)!} \left(e^{+\Gamma\tau} - 1 \right)^{n-1} \cdot e^{-\Gamma\tau(m-1)} + e^{-\Gamma\tau(m-1)} \left(e^{+\Gamma\tau} - 1 \right)^{n-1} \cdot e^{-\Gamma\tau(m-1)} + e^{-\Gamma\tau(m-1)} \left(e^{+\Gamma\tau} - 1 \right)^{n-1} \cdot e^{-\Gamma\tau(m-1)} + e^{-\Gamma\tau(m-1)} +$$

notice that for n«m and $\mu_1 1$, so $(e^{\mu_1} - 1) \rightarrow \mu_1$ the rate of hits is equal to the rate of modules as it is less likely for a single PMT to get two hits in the time window.

Long-Term Stability

Stability	SPL-1	SPL-2	STD 1	STD
DCR	6.9%	6.5%	2.4%	2.3%
1pe Gain	0.19%	0.23%	0.17%	0.209

Both 1PE gain and DCR were stable for 1-month measurements

