AXEL High pressure xenon gas TPC

Kiseki Nakamura (Tohoku)

for the AXEL collaboration

Nagoya Workshop on Technology and Instrumentation in Future Liquid Noble Gas Detectors, 2024/02/15

Introduction

Neutrinoless double beta decay: $0\nu\beta\beta$

- Motivation: Proof of Majorana neutrino (if it happen)
 - Origin of the light neutrino mass: See-Saw mechanism
 - Matter-antimatter asymmetry: Leptogenesis
- Feature of $0\nu\beta\beta$
 - Rare event: >1e26 year (136 Xe)
 - Mono energy: 2.5MeV (¹³⁶Xe)
- Requirements for the detector
 - Large mass
 - Low background
 - Good energy resolution

AXEL experiment

- High pressure xenon gas TPC (Time Projection Chamber)
 - Large mass by high pressure
 - background reduction by tracking
 - high energy resolution by using electroluminescence

ELCC Electroluminescence Light Collection Cell

- AXEL's original readout structure
- Ionization electrons are detected via electroluminescence (EL) cell by cell
- Features
 - EL process is linear amplification --> high energy resolution
 - Pixelized hit pattern for 3D track reconstruction --> BG rejection
 - Scalability thanks to its rigid structure --> large mass

Roadmap

- Constructed 10-L, 180-L prototype
- New 1000-L detector development is ongoing
- Goal: ton scale detector

180-L prototype

- 2018-
- 4.5kg@8bar 672ch
- performance test at Q

- 1000-L detector
 - 2024-
 - 30kg@8bar 6000ch
- physics run at underground

- 10-L prototype
- 2014-2018
- 0.05kg@8bar 64ch
- ELCC proof of concept

ton scale

Performance of 180 L prototype

PTEP 2024 013H01

180L prototype

Energy measurement

- Two kind of the measurement were done
 - ⁸⁸Y source: 1.8MeV
 - Thoriated tungsten rod: 2.6MeV
 - c.f. ¹³⁶Xe 0nbb Q-value: 2.5MeV

PTEP 2024 013H01

Event topology

Evaluation of energy resolution

- Extrapolation of energy resolution (FWHM) to Q-value
 - a√E : 0.662 ± 0.029 %
 - a√E+bE² : 0.717 ± 0.209 %

Breakdown of energy resolution

• Breakdown of energy resolution in FWHM

Fluctuation of the number of initial	0.29%
ionization electrons	
Fluctuation of the EL generation and	0.24%
detection	
Error in the EL gain correction	0.23%
Recombination	0.22%
Fluctuation of the MPPC non-linearity	0.18%
z mis-reconstruction	0.13%
Variation in time bin of time variation	$\lesssim 0.16\%$
correction	
Error in the z-dependence correction	$\lesssim 0.11\%$
Accuracy of the MPPC recovery times	$\lesssim 0.11\%$
Offset of the baseline	$\lesssim 0.09\%$
Fluctuation of the attachment	$\lesssim 0.02\%$
Position dependence of the EL gain	0%
Waveform processing in the FEB	0%
Estimation total 0.63	3% to 0.67%
Data total 0.7	$73 \pm 0.11\%$

Discharge and countermeasure

Discharge monitoring method

- USB camera potted with epoxy resin in SUS case is installed in the chamber
- Take a photo using motion detection software "motion"
- We can know where discharge is happening

details are written in

K.Z.Nakamura-Dth

Field cage for HP180L

details are written in Yoshida-Dth

- Design
 - two size electrodes are overwrapping --> shield chamber GND
 - rounded electrode --> avoid field concentration
 - drift length: 18cm (to be updated to 50cm)
 - Voltage
 - cathode: -20.9kV
 - anode: -9.5kV outer electrode inner electrode PTFE spacer

Field cage for HP180L

details are written in Yoshida-Dth

- Discharge
 - 1. HV cable surface
 - 2. from screw axis thorough the gap between jig and spacer
 - --> polyimide cover works well

ELCC design history

- 1. Initial trial (proof of principle)
 - a lot of small discharge event were detected
 - discharge rate was suppressed by using electrode with a bit larger hole
- 2. Unit structure (extendable)
 - discharge happened at the edge of the ELCC unit
- 3. Overwrapping insulator
 - improved but did not reach target value
 - very difficult to take out 1 unit (for maintenance and so on)

ELCC design story

- 4. High resistance electrode (DLC)
 - DLC spattered electrode
 - still discharge happened
 - 150 Mohm/square DLC is not sufficient
 - --> DLC sputtering tends to create microscopic structure at the edge of the electrode, triggering the discharge.

details are written

in Hikida-Mth

- 5. Side trenched insulator
 - discharge frequency has surpressed significantly
 - after several discharge, continuous discharge started (maybe due to the peeled off DLC carbon)

ELCC design history (3)

- 6. Cross shape insulator cover
 - updated overwrapping insulator
 - easier to maintain 1 unit
 - --> Test is ongoing!

details are written in Hikida-Mth

GND mesh development

details are written in K.Z.Nakamura-Dth

- Problem
 - Mesh edge sometimes fray --> enter the ELCC hole --> trigger discharge
- Mesh making method
 - 1. SUS mesh is head welding by PFA films
 - 2. Welded mesh is cut with a Tomson mold

R&Ds for 1000 L detector

1000 L detector experiment

- Site: Kamioka observatory of ICRR
 - ~1000m underground
- Estimated performance
 - Onbb event rate: 0.25 events/year (T_{1/2}=2.3 x 10²⁶ year)
 - Background rate: <0.1 events/year (assuming ²¹⁴Bi)

Pressure vessel

- Specification
 - Size: 1.0 mΦ x 1.5 m
 - Weight: 1.4 ton
 - Pressure: up to 10atm

Arrive at Kamioka (30.Mar.2023)

Complete installation (17.May.2023)

New MPPC

- Large-area MPPC
 - ~ twice larger area than before
 - circle shape --> reduce dark count from unnecessary area
 - --> increase EL photon statistics
- MPPC on FPC
 - Remove ceramic package to reduce RI contamination
 - Evaluation of prototype FPC with 1 channel

New electronics

- Spec
 - · 64ch MPPC waveform readout board with DC coupling
 - 65V bias apply (individual bias adjustment)
 - Two types of gain
 - Low gain: EL photons
 - High gain: 1p.e. calibration
- Status
 - 1st product just arrived (2024/2/5)

High voltage supply

- Cockcroft-Walton (CW) circuit
 - Make high voltage in the chamber
 - 10step unit structure
- Performance check
 - 71.86kV in atmosphere (80step)
 - 30kV in xenon gas (30step)
 - target: 76kV in xenon gas

Scintillation light detection

- VUV-PMT
 - detect scintillation photon --> determine absolute z position
 - accidental coincidence is problem (current scintillation detection yield is not so good)
- New detection method
 - Wavelength shifted photon is detected at the side by SiPM
 - Large detection area
 - Simulation study with 2 types of configuration
 - R&D of WLS coating method is ongoing

Summary

- AXEL: high pressure xenon gas TPC
 - EL readout --> energy resolution
 - pixel readout --> event topology
- 180 L prototype: large size prototype detector
 - energy resolution: ~0.7% FWHM @2.5MeV extrapolated
 - breakdown investigation
 - further improvements to achieve 0.5% FWHM (target)
 - event topology:
 - clear tracks are obtained up to 2.5MeV gamma-ray
- Technical R&Ds
 - Field cage, ELCC, mesh developments to prevent discharge
 - Development of Cockcroft-Walton in xenon gas
 - Effective scintillation detection method
 - and so on