

Xenon Purification for the low background experiment

Masaki Yamashita Kavli IPMU The University of Tokyo (WPI) on behalf of the XENON collaboration

地下から解き明かす宇宙の歴史と物質の進化

2024/2/16 Nagoya Workshop on Technology and Instrumentation in Future Liquid Noble Gas Detectors Masaki Yamashita, Kavli IPMU, The University of Tokyo

PNU

Follow up on XENON1T Excess (from purification point of view)

Liquid Phase Purification for XENONnT

XENON1T Excess follow-up (Tritium background study)

XENONnT (before filling Xe...)

Comments on XENON1T excess

XENON1T excess (2020)

Then, what was it??

Discussion in XENON1T excess Paper

If all the excess events due to tritium:

Required tritium level:

HTO: H2O ratio:

*IAEA/WMO, "Global Network of Isotopes in Precipitation. The GNIP Database." https://nucleus.iaea.1723org/wiser(2015).

Required concentration of H2O or H2 in Xe to explain the excess

H₂O in XENON1T: O(1) ppb, otherwise can not detect such a light yield

~100 ppb

O2 in XENON1T: <1ppb, otherwise can not drift electrons

H2 is also similar level?? (~ppb ??)

Energy [keV]

Atmospheric Tritium Concentration

- We contacted tritium experts in Japan.
- Experts: A fusion reactor that uses tritium as a fuel will become a significant source of atmospheric tritium. => monitoring
- •HT/H2 ~ HTO/H2O X 10⁵ in Japan (US, France)
- •Italy?

Masaki Yamashita, Kavli IPMU, The University of Tokyo

Table 1. Range of average annual values for atmospheric tritium concentrations and specific activities

Species	Concentration, mBq/m ³	Specific activit TU	
HTO	18.7–23.3	14.6-16.7	
HT	27.5-48.5	5.5·10 ⁵ -1.0·10	
CH ₃ T	11.6-15.6	$3.2 \cdot 10^4 - 4.5 \cdot 10^4$	

Journal of Radioanalytical and Nuclear Chemistry, Vol. 239, No. 3 (1999) 527-531

Atmospheric Tritium Concentration

With the help of tritium experts, we measured the atmospheric tritium concentration. (Kakiuchi, IES)

Measurement @LNGS in Italy

	period	HTO [TU*]	
Kamioka Underground	2021/11/30- 12/23	2.4+/-0.1	(
Kamioka Surface	2022/5/24- 6/7	6.7+/-0.1	(
LNGS · surface	2022/1/29- 2/10	5-10 **	(

* $1TU = 10^{-18}$

** W. Plastino et al., Radiat. Meas. 42, 68 (2007)

XENON1T excess ~ ppt H2 impurity in LXe (We are not able to measure ppt H2 impurity in LXe ...) -> future work

Masaki Yamashita, Kavli IPMU, The University of Tokyo

@LNGS

HT [TU*]

(1.6+/-0.02)x10⁵

(1.3+/-0.02)x10⁵

(1.1+/-0.02)x10⁵

Countermeasure at XENONnT

- The TPC was outgassed for a period of about three months before filling the cryostat with GXe.
- Before cooling down and filling, the cryostat and TPC were treated by continuously circulating GXe for ~3 weeks.
- Following these measures, the hydrogen removal units were regenerated before the start of SR0.

Liquid Phase Purification

Xe gas recirculation

XENON

2003

from P. Sorensen talk

Masaki Yamashita, Kavli IPMU, The University of Tokyo

small gas circulation pump

11

GXe Pump

XENON

~2003 R&D

2007 ~ XENON10& XENON100

a few SLPM 2.6 SLPM/ 5 SLPM Masaki Yamashita, Kavli IPMU, The University of Tokyo

2017 XENON1T

QDrive

Magnetic Piston Pump

XENONnT?

~50/70 SLPM

Eur. Phys. J. C (2018) 78:604

What level of Electron lifetime is required?

XENON

- The ionization signal (S2) depends on the impurity in LXe.
 - Elenctronegavie impurities such as O2 capture an electron.
 - -Better e-life is better, but how much do we need? The science cases should drive it.

What level of Electron lifetime is required?

• WIMP Sensitivity depends on begin in the sense of the s

- -S2 efficiency
- Energy resolution

WIMP mass dependent

•S2-only search will impact more

XENON

14

Electron Lifetime in LXe

George Bakale, et al. The Journal of Physical Chemistry, 80(23):2556-2559, 1976.

Masaki Yamashita, Kavli IPMU, The University of Tokyo

 The ionization signal (S2) depends on the impurity in LXe. - Elenctronegavie impurities such as O_2 capture an electron.

$$\frac{1}{N_{\text{Xe}}k_{\text{O}_2}} = \frac{131[g \cdot \text{mol}^{-1}]}{10^{-12} \cdot 2.86[g \cdot \text{cm}^{-3}] \cdot 1.5 \times 10^{11}[\text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1}]} \sim 3[m_{\text{Ne}}k_{\text{O}_2}]$$

- kO₂ : the rate constant for electron attachment to O₂ impurities • n_{Xe}: number density of Xe
- O_2 impurity -> 1 ppt

15

XENONnT: Time Projection Chamber

What level of Electron lifetime is required?

XENON

- The ionization signal (S2) depends on the impurity in LXe.
 - Elenctronegavie impurities such as O2 capture an electron.
- Better e-life is better, but how much do we need? The science cases should drive it.

Masaki Yamashita, Kavli IP

17

Challenges

A big amount of Xe

•A big-size TPC

– 1.5 m drift length

Ultra-low background

-Goal: ²²²Rn: 1 uBq/kg

=> Liquid Phase Purification

Masaki Yamashita, Kavli IPMU, The University of Tokyo

-Total 8.6 tonne = TPC (8.5t) + others (0.1t), > 600 SLPM recirculation speed

Liquid Phase Purification

MEG: LXe calorimeter 100L prototype (2006)

S. Mihara et al. / Cryogenics 46 (2006) 688–693

Fig. 3. Purification system to be inserted to the prototype detector (left). Schematic diagram of the purification system (right).

Masaki Yamashita, Kavli IPMU, The University of Tokyo

XMASS: 800kg Single Phase LXe for DM (2013)

Liquid Phase Purification

XENONnT: LXePUR system

XENON

- LXe pump ~ 2 L/min
- => 1000 SLPM
- -~1 day to recirculate entire inventory
- Two redundant cryogenic liquid pumps
- Two redundant LXe purifiers
- The drift chamber (purity monitor) continuously monitors the electron lifetime with an Xe flash lamp.

Liquid Pump

LXePUR

XENON

- Molecular sieves works in Liquid (i.e. MEG) but it is quite radioactive.
- Q5 (copper coated alumina) was used in LAr (NIMA(2009) 606).

Masaki Yamashita, Kavli IPMU, The University of Tokyo

• We employed two suitable sorbent materials, Q5 and St707 for XENONnT Purification.

Purifier

Q5

- Copper coated alumina
- Rn: $\sim 50 \text{ mBq/kg}$
- •475 g/unit (23 mBq/unit)

 $2Cu + O_2 \rightarrow 2CuO$ regeneration $CuO + H_2 \rightarrow Cu + H_2O$

Masaki Yamashita, Kavli IPMU, The University of Tokyo

St707

- 3kg/unit (0.24 mBq/unit)
- The impurities contact the surface, are captured, and chemisorbed onto the getter.

regeneration heat up to ~400 °C

A firework in LN2

Purity Monitor

Masaki Yamashita, Kavli IPMU, The University of Tokyo

- •a few us to 30 msec
- •~ 15 interval monitoring

•20 cm drift length

- •Gold coated cathode
- •UV light injection by the Xe excimer lamp through optical fiber

Purity Monitor

XENON

LXe Purification Results: Commissioning phase

Masaki Yamashita, Kavli IPMU, The University of Tokyo

St707

•Q5: 5ms electron lifetime in 5 days, $\epsilon \sim 100\% =>$ for initial stager => For science run

Summary

- We have measured the atmospheric tritium concentration in Japan and in Italy.
 - $-HT/H_2$ is ~ 10⁵ higher than HTO/H₂O.
 - We should pay attention for a future experiment such as DARWIN/XLZD.
- Liquid Phase purification has been successfully performed in XENONnT.
 - low radioactive sorbent material in LXe
 - -15 ms electron lifetime
 - St707 has been operated for more than one year.

