Speaker
Description
Radon is a key background consideration in experiments that search for rare events such as dark matter interactions and neutrinoless double-beta decay. For future noble-liquid and -gas detectors, radon emanated into the detection medium will need to be tightly controlled through radon emanation screening of the wetted materials. I will present systems for low-level measurement of radon emanation and for cryogenic emanation that achieve high sensitivity through use of custom high-efficiency ultra-low-background proportional counters. To achieve target sensitivities in future detectors, additional techniques maybe be required to mitigate emanation from large-area surfaces. I will also discuss PNNL’s copper electroforming capability and its potential use to mitigate radon emanation via plating of high-purity copper as a surface treatment.