

Where We Go with Liquid Ar-based Dark Matter Searches?

Masayuki Wada

AstroCeNT, Warsaw February 14 2023 at Nagoya workshop

WHY DARK MATTER?

- Indirect evidence of dark matter existence are came from Astronomical observation.
- No other clues so far...
- Not known where to search...
- Too many theories to follow...
- The choices are
 - We give up... OR Search wherever we can.

Of course, cost efficiency is important.

FEATURES OF NOBLE LIQUID DETECTORS

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- High scintillation & ionization (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation
- No mechanical stress on target materials (one origin of low-energy backgrounds)
- Purification in situ after commissioning

For TPC

- High electron mobility and low diffusion
- Amplification (electroluminescence gain) for ionization signal
- > Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid Argon

- Iower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter

FEATURES OF NOBLE LIQUID DETECTORS

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- High scintillation & ionization (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation
- No mechanical stress on target materials (one origin of low-energy backgrounds)
- Purification in situ after commissioning

For TPC

- High electron mobility and low diffusion
- Amplification (electroluminescence gain) for ionization signal
- > Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid Argon

- Iower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter

SENSITIVITY TO HIGH AND LOW MASS WIMPS

plot credit: http://resonaances.blogspot.ca

4

DARKSIDE PROGRAM

- Direct detection search for WIMP dark matter
- Based on a **two-phase argon** time projection chamber (**TPC**)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from both neutrons and β/γ's

DarkSide-10

DarkSide-50

50g

DarkSide-20k 20 t

and **DarkSide-LowMass 1 t** for low-mass dark matter searches

GLOBAL ARGON DARK MATTER COLLABORATION

DEAP-3600

More than 400 scientists from past and present argon-based experiments in a single international argon collaboration: **GADMC**

- A sequential, two-steps program:
- DarkSide-20k (200 tonne yr fiducial)

Argo (3,000 tonne yr fiducial)

At SNOLAB ~203X

DarkSide-50

The goal: explore heavy dark matter to the neutrino floor and beyond with extremely low instrumental background

MiniCLEAN

ArDM

PULSE SHAPE DISCRIMINATION

Electron and nuclear recoils produce different excitation densities in the argon, leading to different ratios of singlet and triplet excitation states

 τ singlet ~ 7 NS τ triplet ~ 1500 ns [arb] 378 376 f90 ~ 0.3 **Electron Recoil (ER)** 374 372 **f**90 0.9 370 0.8 368 10 sample time [µs] 0.7 0.6 380 375 0.5 f90~0.7 370 0.4 365 **Nuclear Recoil (NR** 0.3 360 0.2 WIMP-like signal! -250 355 0.1 350 0 345 50 -2 10 sample time [µs]

More for PSD: DEAP-3600, Eur. Phys. J. C 81, 823 (2021)

PSD parameter

F90: Ratio of detected light in the first 90 ns*, compared to the total signal

~ Fraction of singlet states

* the 90 ns is optimized value for DS50 and detector dependent parameter.

 $β & \gamma$ Rejection

A. Hitachi et al. Phys. Rev. B 27 (1983) 5279

M. G. Boulay and A. Hime, Astropart. Phys. 25 (2006) 179

UNDERGROUND Ar

- Intrinsic ³⁹Ar radioactivity in **atmospheric argon** is the primary background for argon-based detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is less effective)
 - ³⁹Ar is a **cosmogenic isotope**, and the activity in argon from **underground sources** can be significantly lower compared to **atmospheric argon**

β&γ

Rejection

- Urania (Extraction):
 - Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon

See more details in Federico's talk.

- **DArT** (assay):
 - A single phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches.

WHERE ³⁹Ar COME FROM IN UNDERGROUND Ar?

- We know there were air infiltration operations by the company upstream of our extraction facility.
- In CO2 gas, O2 and Ar concentration are 6.7 ppm and 427 ppm, respectively, by measuring with a gas analyzer.
- Assume all O2 in the CO2 gas come from the air infiltration, we can estimate the concentration of Ar originated from air leak by using the Ar:O2 ratio in the air (0.045).
 - [Ar_leak] = 6.7 ppm *0.0045 = 0.3015 ppm
- This means only 0.3 ppm is originated from the air leak and rest of Ar, 427-0.3 = 426.7 ppm, is from UAr (mostly ⁴⁰Ar).
- So, the ratio of [Ar_leak] to [Ar_UAr] is 0.3015/427 = 7.1e-4.
- It means the concentration of ³⁹Ar originated from air is diluted by this factor relative to AAr after extracting only Ar gas from CO2 gas.
- Thus, the rate/kg of ³⁹Ar due to AAr is 1 Bq/kg * 7.1e-4 = 0.71 mBq/kg.
- If we subtract this from our measured ³⁹Ar rate in DS-50, 0.73 mBq/kg, we get 0.02 mBq/kg = 20 uBq/kg. The depletion factor of 50,000 relative to AAr and 36.5 relative to UAr in DS-50.

10

HOW ABOUT ⁸⁵Kr?

- Using the Kr:O2 ratio in the air (5.44e-6)
 - [Kr_leak] = 6.7 ppm * 5.44e-6 = 3.65e-5 ppm
- This further concentrated by extraction of Ar (427 ppm of Ar), assuming the same extraction efficiency as Ar.
 - ▶ 3.65e-5 ppm/ 427 ppm = 8.54e-8 = 0.854 ppb in UAr.
- Convert to mol/kg by using the atomic mass of Ar (1kg = 25.03 [mol]),
 - 0.845e-9*25.03 = 21.15e-9 mol/kg of Kr.
- Concentration of 85 Kr in natural Kr is 85 Kr / nat Kr = 2e-11 [1].
- So, the concentration of ⁸⁵Kr is 4.23e-19 mol/kg = 2.55e+5 atom/kg.
- ▶ R₀ = 2.55e+5/tau = **0.52 mBq/kg**, where tau for ⁸⁵Kr is 4.89e+8 s (10.76 yrs).
- > The rate of ⁸⁵Kr decay observed in DS-50 is estimated as R0 = **2 mBq/kg** by G. Koh [2].
- Thus, estimation of ⁸⁵Kr concentration based on the air-infiltration is ~4 times less than we measured in DS50.
- ▶ Given the uncertainties, the order agreement support that ⁸⁵Kr is from the air-infiltration.

Possible reduction of ³⁹Ar and ⁸⁵Kr by fixing air infiltration.

11

HIGH MASS WIMP SEARCH

Slovenia 2

Croatia

National Institute

Naple

Pomp

Zadar

Bosnia and Herzegovina

Materao Taranto Lecce

Sarajevo

Mont

3800 m w. e.

Bra In smill

Deep underground location at LNGS, Italy.

DARKSIDE-20K DETECTOR

- DarkSide-20k will be installed underground at the Gran Sasso National laboratories, in Italy.
- > The detector has a nested structure:
 - Titanium Vessel contain liquid underground argon (100 t)
 - Gadolinium loaded acrylic TPC filled with 50 t of UAr
 - Neutron veto buffer between TPC and Ti vessel
 - Membrane cryostat like the ProtoDune one

TPC

DARKSIDE-20K

TIME PROJECTION CHAMBER

- Gd-doped acrylic, PMMA (polymethylmethacrylate), vessel to capture neutrons
- Octagonal shape
- Cathode and anode coated with new transparent conductor (Clevios) and wavelength shifter
- Grooves with Clevios for field cage (No copper rings)

- Wire grid for extraction and electroluminescence fields
- Sides covered with multilayer polymeric reflector evaporated with wavelength shifter (TPB)
- SiPMs planes external to anode and cathode

Yi's talk covers more

15

In-house fabrication of the gas handling system

TPC Cryogenic system (test installation) at CERN

DARKSIDE-20K

PHOTO SENSOR

- Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy.
- Key features
 - Photon detection efficiency (PDE) ~45%
 - Low dark-count rate < 20 cps</p>
 - Timing resolution ~ 10 ns
- The 28m² for the TPC (2112 channels) + 480 channel for Veto detector. Mass production of the raw wafer in LFoundry company and assembly in a dedicated facility at LNGS (NOA).

Single SPADs ~25-30 µm² Single SiPM ~1 cm²

Photo Detector Module (PDM) = matrix of 24 SiPMs, 5 x 5 cm² 4 PDUs are summed and read as a single channel (largest single SiPM unit ever!)

VETO DETECTOR

Neutrons elastically scattering from argon nuclei are indistinguishable from WIMPs signals. PSD is useless against neutron events.

Veto Structure

- 8 vertical panels of acrylic loaded with gadolinium (Gd-PMMA), form lateral walls of the TPC. Acrylic thickness: 15 cm.
- The UAr volume between the Ti vessel and Gd-PMMA serves as a veto volume with ~40 cm thickness.
- Reflector with WLS on all the surfaces

Veto Working Principle

- 1. Neutrons are moderated in the acrylic shell and then captured by gadolinium.
- 2. Gd emits multiple γ -rays with energy up to 8 MeV.
- 3. γ-rays interact in the liquid argon buffers.
- LAr scintillation light is shifted and detected by ~1920 SiPM-based photosensors.

EXPECTED SENSITIVITY

The sensitivity of DS-20k to spin independent WIMPs for different lengths of runs, with the full exposure and with the fiducial cuts applied, compared to LZ and XENONnT.

• The present projection - based on a 10 yr run, giving a fiducial volume exposure of 200 t yr - is 6.3 x 10⁻⁴⁸ cm² for 1 TeV/c² WIMP for the 90% C.L. exclusion.

Turquoise filled contours is from pMSSM11 model (E. Bagnaschi et al., Eur. Phys. J. C 78, 87 (2018).

FUTURE LAr DM DETECTOR

ARGO

- Location is most likely at SNOLAB.
- Considering front-side SiPMs with wavelength shifter and backside-illuminated VUV-sensitive SiPMs.
- Both options as photon-to-digital converters (PDCs).
- Data rates:
 - nominal 5000 photons/sec/m²
 - calibration 100k photons/sec/m² (max. around 250 Mbytes/s)
- Currently, considered to be single phase. TBD
- Event vertex reconstruction and particle ID using spatial and temporal photon hit pattern.
- Inner 300 tonnes of low-radioactivity argon used in dark matter search.

FUTURE LAr DM DETECTOR

ARGO

Questions to be addressed:

- UAr or AAr for LAr buffer?
 - > If UAr, production and storage limited.
 - If AAr, how to separate UAr from AAr? Tight seal w/ acrylic vessel is difficult.
- SiPMs w/ WLS or VUV-SiPMs w/o WLS?
 - If VUV-SiPMs, PDCs need to be in the acrylic vessel. How penetration for power and signals can be done?
- Where to store depleted UAr? Activation of ³⁹Ar low enough?
- BG questions:
 - Does PSD strong enough to suppress 0.73 mBq/kg ³⁹Ar x 300 tonne x 10 years (~7e10 evts)? DEAP-3600 achieved ~3.4e-10 PSD suppression.
 - Any neutron veto? High energy neutrons will penetrate the LAr buffer.
 - Degraded alpha from surface can be well located in single phase? How about pile up with S2-only events in double phase?
 - How degraded alpha from dust can be mitigated if the acrylic vessel is sealed?

21

FUTURE LAr DM DETECTOR

PROJECTED SENSITIVITY

> Down to ν -fog based on simple extrapolation.

WHAT WE LEARNT SO FAR...

- Main BGs and mitigation methods
 - γ: SiPMs pure materials; fiducialization
 - β: ³⁹Ar, ⁸⁵Kr –– cryogenic distillation; better extraction facility
 - b degraded α: Rn, dust (seen in DEAP3600) keep detector cold as much as possible; clean construction procedure; liquid phase circulation.
 - neutron: detector materials (α,n), cosmogenic less materials close to the fiducial volume; deeper site; neutron veto.
 - Combined:
 - S1 from a and S2 from pileup S1+S2 from γ or β less a; better reconstruction for S1+S2 separation
 - S1 and S2 from γ or β + Cherenkov less material for Cherenkov;
 fiducialization

CHALENGES FOR LAr ~300 TONNE DETECTOR

- Wavelength Shifter
 - > TPB works! But it need a large vacuum chamber, production takes time...
 - Alternative
 - PEN (See <u>M. Kuzniak's talk</u> at DRD Meeting)
 - Dissolving TPB (or other WLS) into LAr
- UAr extraction
 - Risk at the extraction site the company stop extraction when the price of their products go down.
- Well defined E-field and gas pocket (TPC application only)
 - Large area wire grid Sagging
 - Large area anode and cathode Sagging (experienced in DS-50), ITO, conductive polymers, or other solution?
 - Alternative
 - Floating GEM (transparent electrodes+ PEN for WLS).
 Scalable and sustainable without supporting structures.
 Insensitive to small variation of gas pocket size.

LOW MASS WIMP SEARCH

Ionization Only Channel

LOW MASS WIMP SEARCH

- Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr}
- Ionization signal (S2): threshold < 0.1 keV_{ee} / 0.4 keV_{nr} Can go lower threshold!
- Use Ionization (S2) Only.
 - Amplified in the gas region (~23 PE/e⁻ or more)
 - Sensitive to a single extracted electron!
 - The electron yield for nuclear recoils increases at low energy

Events / [0.05 $\mathrm{N_{e^{-}}} imes \mathrm{kg} imes \mathrm{day}$] DS-50 DATA Center PMT Getter Off 10² Getter On Ext. e 10 Ext. e's 1 10^{-1} 10^{-2} 1.5 N_e-0.5 1 2 2.5

Ar has lighter mass than Xe. So, more efficient momentum transfer from low mass DM.

WHAT WE ACHIEVED IN DS-50

Phys. Rev. D 107, 063001

The most stringent limit at $M_{\chi} = [1.2, 3.6] \text{ GeV/c}^2$

Annual modulation analysis on arXiv!

arXiv:2307.07249

SUB-GEV DARK MATTER AND OTHER DARK MATTER MODELS

- With the same dataset, we search for other dark matter models.
- In those candidates, DM signals are also ER.
- Ultra-light DM (m_χ«1 GeV) scatter off electrons.
- Two extreme cases of Dark Matter form-factor are considered
 - ► F_{DM}=1 heavy mediator
 - ► $F_{DM} \propto 1/q^2$ light mediator
- More for Axion-like particles, Dark photons, and Sterile neutrinos.

Also, results with Migdal effect Phys. Rev. Lett. 130, 101001

WHAT WE LEARNT SO FAR...

- Main BGs and mitigation methods
 - γ : SiPMs -- pure materials; fiducialization; less component (less performance requirements)
 - β: ³⁹Ar, ⁸⁵Kr -- cryogenic distillation; better extraction facility; reduced as much as possible
 -> small target mass helps
 - degraded α: Rn, dust (seen in DEAP3600) –– Less concern. keep detector cold as much as possible; clean construction procedure; liquid phase circulation.
 - neutron: detector materials (α,n), cosmogenic –– Less concern. less materials close to the fiducial volume; deeper site; neutron veto.
 - Combined:
 - > S1 from α and S2 from pileup S1+S2 from γ or β –– less α ; better reconstruction for S1+S2 separation
 - > S1 and S2 from γ or β + Cherenkov less material for Cherenkov; fiducialization
 - Spurious Electrons (SE) in situ and ex situ purification; less total activity in TPC; In LAr, it seems SEs are well confined Ne<4. See Masato's talk.</p>

DARKSIDE LOW MASS

CRITERIA FOR FUTURE LAr TPC

- ▶ Low activity of ³⁹Ar
- Low impurity
 - good electron lifetime
 - Iow rate of the single electron events
- Ultra-pure photo-sensor
- Pure (or no) cryostat
- With 1 t yr exposure, ν-fog is reachable!

The sensitivity of DarkSide-20k for low mass are coming!

Further improvements?

Lower threshold – remove SE; reduce work function by doping Xe

OTHER LAr DM DETECTOR

SCINTILLATING BUBBLE CHAMBER

- ER free bubble chamber + good energy resolution of liquid scintillator.
- No bubble formation from ERs via this heat channel.
- BG free even at low energy NRs (<1 keV).</p>
- I ton-yr exposure with BG free could be achievable with extrapolation of the current technology.

- TPC with underground Ar has excellent properties suited to high and low mass WIMP searches.
- Large effort for DarkSide-20k is ongoing and the construction started in LNGS.
- Clear scale up strategies necessary.
- Careful planning of extraction and purification of UAr is necessary.

MEMBERS OF MY GROUP

Azam Zabihi

- **PostDoc** working on Medical applications
- Andre Cortez
 - PostDoc expert on gas and liquid noble detectors
- Iftikhar Ahmad
 - 4th year PhD student working on SiPM development
- Paul Zakhary
 - 4th year PhD student working on low energy calibration
- Clea Sunny
 - 2nd year PhD student working on low energy calibration

One postdoc position is open!!

If you are interested, contact me at masayuki@camk.edu.pl

Thank you!

EXPECTED DISCOVERY POTENTIAL

The 5σ significance of DS-20k to spin independent WIMPs for different lengths of runs, with the full exposure and with the fiducial cuts applied, compared to LZ and XENONnT..

• The present projection - based on a 10 yr run, giving a fiducial volume exposure of 200 t yr - is 2.1 x 10⁻⁴⁷ cm² for 1 TeV/c² WIMP for the 5σ discovery.

Turquoise filled contours is from pMSSM11 model (E. Bagnaschi et al., Eur. Phys. J. C 78, 87 (2018).

LAr AS A DARK MATTER DETECTION TARGET

