The development of hermetic TPC for the DARWIN experiment

Masatoshi Kobayashi (Nagoya University)

Nagoya Workshop on Technology and Instrumentation in Future Liquid Noble Gas Detectors 2024.02.14-16

Introduction: future DM direct detection with LXe

- Current world limit for dark matter search, especially heavy WIMPs, are achieved by liquid xenon detectors.
 - O(10⁻⁴⁶ 10⁻⁴⁷)cm² achieved in G2 detectors
- For future DM search:
 DARWIN/XLZD is planned with ~50 t or more of LXe.
 - Target: ~10⁻⁴⁹ cm², aiming to reach the limitation by solar and atmospheric neutrino background (neutrino fog)

• We need ~1/10 of XENONnT target level -> How to achieve?

Rn BG target for future detector

- Improvement by surface-volume ratio is not enough:
 - Additional Rn reduction is required !

Yamashita, Dark Matter searches in the 2020s at the crossroads of the WIMP

- To solve this issue, we are studying about Hermetic TPC.
 - Fully Isolating the TPC volume using Quartz/PTFE
 - VUV transparent quartz with low radioactivity
- Non-hermetic quartz TPC has been tested: PTEP, 2020, 113H02
 - Detector components are stacked without tightened
 - No significant impact in operation (ex. charge up) has been observed
- Next step: fully hermetic TPC

- To solve this issue, we are studying about Hermetic TPC.
 - Fully Isolating the TPC volume using Quartz/PTFE
 - VUV transparent quartz with low radioactivity
- Non-hermetic quartz TPC has been tested: PTEP, 2020, 113H02
 - Detector components are stacked without tightened
 - No significant impact in operation (ex. charge up) has been observed
- Next step: fully hermetic TPC

Advantages

- Almost no Rn222 emanation
- Less O₂/H₂O outgassing
- Coating electrode (no sagging)
 - Dedicated study ongoing

Challenges

How tightly can we close?How to stabilize the detector?Which kind of materials for coating?

Advantages

- Almost no Rn222 emanation
- Less O₂/H₂O outgassing
- Coating electrode (no sagging)
- Dedicated study ongoing

Challenges

How tightly can we close?
How to stabilize the detector?
Which kind of materials for coating?

1. Characterization of hermetic chamber

2. Measurement of material QEs in LXe

Advantages

Challenges

How tightly can we close?
How to stabilize the detector?
Which kind of materials for coati

9

1: Characterization of hermetic chamb

Conditions of Quartz flange:

NPT screw or Branch-arm? Gasket thickness? With/Without spacer? **Torque?**

For TPC design:

- **Piping: NPT screw**
- **Gasket material: ePTFE**
- Gasket thickness: 0.5 [mm]
- Use PEEK spacer

But: How about Rn shielding vs Leak rate?

Vacuum leak rate vs Rn shielding

- 1L Rn detector developed by SuperK group
 - PTEP Volume 2018, Issue 9, Sep 2018, 093H01

- Measurement done with GN2
- Inner Rn concentration was measured
 - BG run: without Rn source outside Quartz
 - Rn run: with Rn source outside Quartz

11

Vacuum leak rate vs Rn shielding

@Torque 7.0 [N • m]: Leak rate: 1.7×10^{-8} [Pa · m³/s] $R_{in/out}$: $(1.39 \pm 0.03) \times 10^{-2}$

[s/_e *u* ed 1.25 rate eg 0.75

- Based on the result of the test, we designed the 0.1L R&D detector
 - Top/Bottom flange: quartz
 - Body: Quartz or PTFE
 - Different gasket shape
- The assembly and vacuum test showed difficulty in quartz body to apply enough torque
 - PTFE body + thin gask chosen
- More details in Ryuta M poster

- Based on the result of the test, we designed the 0.1L R&D detector
 - Top/Bottom flange: quartz
 - Body: Quartz or PTFE
 - Different gasket shape
- The assembly and vacuum test showed difficulty in quartz body to apply enough torque
 - PTFE body + thin gasket is chosen
- More details in Ryuta Miyata's poster

- Based on the result of the test, we designed the 0.1L R&D detector
 - Top/Bottom flange: quartz
 - Body: Quartz or PTFE
 - Different gasket shape
- The assembly and vacuum showed difficulty in quartz to apply enough torque
 - PTFE body + thin gasket chosen
- More details in Ryuta Miya poster

- The result of vacuum test with PTFE body + thin gasket
 - Same vacuum level with previous test
 - Other conditions (ex. quartz body) has ~x10 larger leak rate
 - Blue: estimated Rn leak rate in DARWIN based on the He leak rate
- Also long term (1month) test showed no significant increase of leak rate
- Currently GN2 test is ongoing
- LXe system is also in preparation, plan to test by this summer

13

- The result of vacuum test with PTFE body + thin gasket
 - Same vacuum level with previous test
 - Other conditions (ex. quartz body) has ~x10 larger leak rate
 - Blue: estimated Rn leak rate in DARWIN based on the He leak rate
- Also long term (1month) test showed no significant increase of leak rate
- Currently GN2 test is ongoing
- LXe system is also in preparation, plan to test by this summer

2: Measurement of material QEs in LXe

Coating materials

- Advantage of hermetic chamber: static quartz structure
 - Anode/Cathode can be coated on top of the plate
 - Mechanically stable (ex. no sagging)

- One of the requirement for the coating material: low quantum efficiency (QE)
 - To suppress the single-E background from photoelectric effect
- => Measure the quantum efficiencies of materials in LXe!

Measurement setup

- Injecting the VUV light from D2 lamp using band -pass filter and optical fiber
 - $\lambda = 179.5 \pm 7.4 \text{ nm}$
- Measure photons with PD, electrons by included current
- Three materials are tested:
 - Stainless steel: being used in G2 detectors
 - Pt: High work function metal (> SS)
 - AI + MgF2: coated by insulator on top of metal

AI + I ~10 mm

QE = (N of Electrons)/(N of Photons) Photons

1. Measure the signal from PD using ammeter

Electrons

- 1. Electrons are emitted via photoelectric effect
- 2. Drift them with the e-field between anode/ cathode
- 3. Measure the induced current using chargesensitive pre-amplifier
- The measurement has been performed with lamp ON/OFF and different drift fields

16

Detector setup

Light source

- D2 lamp + band-pass filter
- Located in the vacuum chamber

17

Detector chamber mounted in LXe setup

Result of the measurement in LXe

•QE(Pt) > QE(SS)

- Work function of Pt is higher than Stainless Steel, but QE is also higher
- Passive layer on top of Stainless Steel effectively increase the work function?

•QE(AI + MgF₂) / QE(SS) = 0.29 ± 0.15

•We can expect to suppress the photo-ionization by using MgF_2

		QE @ 6 kV/cm
♦: P	ł	$(3.21 \pm 1.10) \times 10^{-3}$
•: S	S	$(2.49 \pm 1.03) \times 10^{-4}$
 : A	I+MgF ₂	$(7.19 \pm 2.25) \times 10^{-5}$

 $\times 10^{-4}$

Summary

- Hermetic quartz TPC:
 - Further Rn reduction for future liquid xenon detectors
 - Quartz plates can be coated and used as electrodes
- Test of the quartz flange was performed and achieved:
 - Suppressing the Rn concentration to ~1.4% with small test flange
 - Currently the test with 0.1L detector is ongoing
 - LXe system being prepared
- The measurement of QE for coating materials was also performed:
 - QE for Pt, Stainless steel and Al+MgF₂ are measured
 - AI+MgF₂ showed the lowest QE: \sim 30% of SS
 - The single phase S2 production with microstrip coated electrode is also ongoing

• •

BACK UP

.

