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Introduction

Quantum error correction (QEC)

- important framework in realizing fault-tolerent quantum computation
- add redundancy to embed quantum states into a larger Hilbert space
C = quantum states to be protected C H = larger Hilbert space

- similar to the structure of gauge theories:

C : physical space (observables) , ‘H : total state space
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Quantum error correction and high energy physics

QEC has (unexpected) applications in high energy theory:

- AdS/CFT as QEC :

C : effective theory on AdS , ‘H : CFT on the boundary

- A certain class of (1+1)-dim. CFTs :

C : a certain type of operators , H : CFTo
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Quantum error correction



Classical error correction

- Communication over noisy channel (e.g. phone, radio, etc.)

sender: 01001010--- ——  receiver: 00101110 --
noisy channel

- How to protect messages against errors?

- Example: Repetition code
- Encoding: repeat each bit three times, 0 — 000 , 1— 111
- Decoding: majority vote, 010 — 000 , 110 — 111

- Can correct one bit-flip error, and reduce the error probability
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Quantum error correction
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- One qubit error operator: E=e1 I + e X +e3Y +es Z

X:Ol, Y:(')ﬂ, Z:10
1 0 i 0 0 -1
- Error types:
Bit flip X|a)y=la+1)
Phase flip Z|ay = (=1)%|a)

Bit & phase flip Y |a) =i(-1)%|a+ 1)

- To correct the most general possible error, it is sufficient to correct just X
and Z errors
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Quantum analog of repetition codes?

- Quantum analog of repetition codes

|0) — |000) , 1) — |111)

- However, there is no device to copy an unknown quantum state (no-cloning
theorem)

%) 7 [¥) ® |4)
- How to encode a quantum state into a three-qubit state without cloning?

[y =al0)+b11) = a]000)+b|111) # )
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Stabilizer formalism

- Let S be a stabilizer group generated by a set of (n — k) independent
operators (stabilizer generators):

M; M; = M; M; ,  M?=1%"
- Let |¢r) € (C%)®" be a logical state in an n qubit system defined by

M L) = |tbr) VM €S

Such a state can be constructed as

n—k

orh =TT |25 1) forany o
=1

- The set of logical states forms an [[n, k]] quantum code when —I ¢ S
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Geometry of stabilizer codes

My = +1

i’ code subspace

/]

My =+1

Errors map a state in the code subspace to the outside
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Three qubit bit-flip code ( [[3, 1]] code )

- Encode one-qubit states into three-qubit states:

0) — |0z) =1000) ,  |1) — [1z) = [111)

) =al0)+b[1) — |¢r)=a|0r)+b 1)
- The logical state |¢) is the simultaneous eigenstate of the generators:
M [Yp) =) (i=1,2), M =2ZZI, My=12Z2Z
- The X error can be detected by measuring My, Mo, e.g.

My (XTI |[¢p))=—-XII |¢yr)
My (XTI |[¢pp)) =+XIT |¢r)
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Detection and correction of X error

- The eigenvalues of (M;, Ms) determine

M, M, Error
1 1 noerror
1 -1 171X

-1 1 XII

-1 -1 IXI

- The detected X error on the i*" qubit can be corrected by acting with X on
the qubit since X2 =1

- This code can detect and correct one X error but cannot detect Z errors
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Five-qubit code ([[5, 1]] code)

Stabilizer generators Logical states

M| X 2z 7z X I

4
My | T X 2z 7z X

_ ®5
Mi|X I X Z Z |0z) = H |0%>)
M|z X I X Z i=1
X, | X X X X X |17) = Xz |0r)
% | G5 % 7 G 5
(M, X1] = [Mi, Zr] =0, {Xp,Z1}=0 Zp|0p)=1[0L), Zp|lL)=—[1L)

This is the smallest code encoding a one-qubit state
and protecting against one-qubit errors
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Error syndrome

- There are 15 single-qubit errors

- The error syndromes can take 2% = 16 distinct values

‘ I X\ Xo Xs Xua Xo Zy Zy Zs Zy Zs Y1 Yo Y3 Yy Y;
M, 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0
My 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1
Ms | O 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1
My 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1

- The 15 errors + no error state are one-to-one to the syndrome values

- The five-qubit code is
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Applications




Five-qubit code as quantum secret sharing

- Five-qubit code has a nice structure
known as quantum secret sharing

(QSS) Plaqyers
1
Logical qubit —  Secret / \ Secret
qz
Five qubits —  Players | %)
Secret ~ /
—> Q3
- Any set of three players A (and | &)
more) can reconstruct the secret: AU — . .
no information
AU, st (Ua®Iz) [vr) =|¢) @ |xa) G —

(Jxa): product of EPR pairs)
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Toy model of holography

- Five-qudit code as a model of holography

Logical qubit —  Bulk operator

O

Five qubits —  Boundary operators

Reconstruction of bulk op.

SS .
. from a bdy subreagion boundary operators
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Holography and entanglement wedge

Ryu-Takayanagi

surface
causal wedge entanglement wedge

In holographic models, bulk operators in an entanglement wedge can be
reconstructed from operators on the boundary

- QSS property implies entanglement wedge reconstruction
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Realization of stabilizer code in physical system

- For stabilizer generators M; (i = 1,--- ,n — k), the Hamiltonian whose
ground state equals the code subspace is given by

H=-) JM; J;i >0

- Example: n qubit repetition code ([[n, 1]] code) = M; =Z; Z;i11
- Realized by 1d ferromagnetic Ising model:

H=-) JZZin J>0

- Ground states spanned by |0z) = [0)®" , |1L) = [1)®™

GS) = a [0) +b |1L) (lal* + [o* = 1)
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Toric code iiuev o3

Locate 1 qubit on each edge

- Stabilizer generators: = 32L2 qubits in total
a=llxe. 5=z CTTTT
¢ —o O—— == @=———0—

OBfO
© 3217 — 2 generators ([T, 4y =1, ][ By = 1) +++J> i L+
= [[2L?,2]] quantum code f{” 1 x L

[

e A L1t 1,17
v f

L x L lattice on a torus

- Hamiltonian

= Zs gauge theory

v: vertex, e: edge, f: face .



2d CFT from QEC

- It has been well-known that 2d CFTs can be constructed from certain classical
codes

Classical codes — Euclidean lattices — Chiral CFTs

- Recently, this construction was generalized to quantum codes

Quantum codes — Lorentzian lattices — Non-chiral CFTs
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Narain code CFTs

Qudit stabilizer codes Classical codes Lorentzian lattices Narain code CFTs

- The resulting CFTs are bosonic CFTs of Narain type

- Some of them yield by fermionization
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Summary




The structure of QEC has senn applications in high energy physics

- Holography:
There is a class of QEC known as holographic codes which admit a
holographic interpretation

- QFT:

There are examples of QFTs with QEC structures, including discrete gauge
theory, topological phases, fractons, code CFTs, ...

More applications of QEC to QFT?
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