Quantum error correction and high energy theory

Tatsuma Nishioka (Osaka)

2024/3/5 @ KMI school 2024

Extreme Universe A New Paradigm for Spacetime and Matter from Quantum Information

Grant-in-Aid for Transformative Research Areas (A)

Quantum error correction (QEC)

- important framework in realizing fault-tolerent quantum computation
- add redundancy to embed quantum states into a larger Hilbert space

 $\mathcal{C} =$ quantum states to be protected $\ \subset \ \mathcal{H} =$ larger Hilbert space

• similar to the structure of gauge theories:

C: physical space (observables), H: total state space

QEC has (unexpected) applications in high energy theory:

• AdS/CFT as QEC : [Almheiri-Dong-Harlow 14, Pastawski-Yoshida-Harlow-Preskill 15, · · ·]

 $\mathcal{C}:$ effective theory on AdS , $\mathcal{H}:$ CFT on the boundary

• A certain class of (1+1)-dim. CFTs : [Harvey-Moore 20, Dymarsky-Shapere 20, · · ·]

 \mathcal{C} : a certain type of operators , \mathcal{H} : CFT₂

Quantum error correction

Applications

Toy model of holography

 \mathbb{Z}_2 gauge theory

2d CFT

Summary

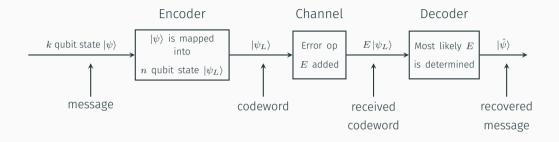
Quantum error correction

• Communication over noisy channel (e.g. phone, radio, etc.)

sender : $01001010 \cdots$ $\xrightarrow{\text{noisy channel}}$ receiver : $00101110 \cdots$

- How to protect messages against errors?
- Example: Repetition code
 - + Encoding: repeat each bit three times, $0 \rightarrow 000$, $1 \rightarrow 111$
 - + Decoding: majority vote, $010 \rightarrow 000$, $110 \rightarrow 111$
 - $\cdot\,$ Can correct one bit-flip error, and reduce the error probability

Quantum error correction



- \cdot Message \Rightarrow quantum state $|\psi
 angle$
- Codeword \Rightarrow logical state $|\psi_L\rangle$
- Received codeword \Rightarrow errored state $E |\psi_L\rangle$

Error models

• One qubit error operator: $E = e_1 I + e_2 X + e_3 Y + e_4 Z$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} , \qquad Y = \begin{bmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{bmatrix} , \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Error types:

Bit flip
$$X |a\rangle = |a+1\rangle$$
Phase flip $Z |a\rangle = (-1)^a |a\rangle$ Bit & phase flip $Y |a\rangle = i (-1)^a |a+1\rangle$

• To correct the most general possible error, it is sufficient to correct just *X* and *Z* errors

Quantum analog of repetition codes?

• Quantum analog of repetition codes

$$|0\rangle \rightarrow |000\rangle$$
, $|1\rangle \rightarrow |111\rangle$

• However, there is no device to copy an unknown quantum state (no-cloning theorem)

 $|\psi
angle
eq |\psi
angle \otimes |\psi
angle$

• How to encode a quantum state into a three-qubit state without cloning?

$$|\psi\rangle = a |0\rangle + b |1\rangle \xrightarrow{?} a |000\rangle + b |111\rangle \neq |\psi\rangle^{\otimes 3}$$

• Let S be a stabilizer group generated by a set of (n - k) independent operators (stabilizer generators):

$$M_i M_j = M_j M_i , \qquad M_i^2 = I^{\otimes n}$$

• Let $|\psi_L
angle\in (\mathbb{C}^2)^{\otimes n}$ be a logical state in an n qubit system defined by

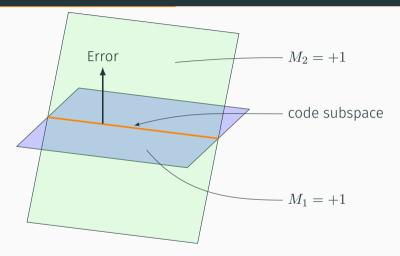
$$M |\psi_L\rangle = |\psi_L\rangle \qquad \forall M \in \mathcal{S}$$

Such a state can be constructed as

$$|\psi_L
angle = \prod_{i=1}^{n-k} \left[rac{1+M_i}{2}
ight] |\phi
angle \qquad {
m for any} \ |\phi
angle$$

• The set of logical states forms an [[n,k]] quantum code when $-I \notin S$

Geometry of stabilizer codes



Errors map a state in the code subspace to the outside

Three qubit bit-flip code ([[3,1]] code)

• Encode one-qubit states into three-qubit states:

$$|0\rangle \longrightarrow |0_L\rangle \equiv |000\rangle$$
, $|1\rangle \longrightarrow |1_L\rangle \equiv |111\rangle$

$$|\psi\rangle = a |0\rangle + b |1\rangle \longrightarrow |\psi_L\rangle = a |0_L\rangle + b |1_L\rangle$$

• The logical state $|\psi_L\rangle$ is the simultaneous eigenstate of the generators:

$$M_i |\psi_L\rangle = |\psi_L\rangle \ (i = 1, 2) , \qquad M_1 \equiv Z Z I , \qquad M_2 \equiv I Z Z$$

• The X error can be detected by measuring M_1, M_2 , e.g.

$$M_1 (X I I |\psi_L\rangle) = -X I I |\psi_L\rangle$$
$$M_2 (X I I |\psi_L\rangle) = +X I I |\psi_L\rangle$$

Detection and correction of X error

• The eigenvalues of (M_1, M_2) determine the error syndromes:

M_1	M_2	Error
1	1	no error
1	-1	I I X
-1	1	X I I
-1	-1	I X I

- The detected X error on the i^{th} qubit can be corrected by acting with X on the qubit since $X^2 = I$

• This code can detect and correct one X error but cannot detect Z errors

Five-qubit code ([[5,1]] code)

Stabilizer generators							
M_1	X	Z	Z	X	Ι		
M_2	Ι	X	Z	Z	X		
M_3	X	I	X	Z	Z		
M_4	Z	X	I	X	Z		
X_L	X	X	X	X	X		
Z_L	Z	Z	Z	Z	Ζ		

Logical states

$$| 0_L \rangle = \prod_{i=1}^4 \frac{1+M_i}{2} | 0^{\otimes 5} \rangle$$
$$| 1_L \rangle = X_L | 0_L \rangle$$

 $[M_i, X_L] = [M_i, Z_L] = 0, \quad \{X_L, Z_L\} = 0$

$$Z_L | 0_L \rangle = | 0_L \rangle , \quad Z_L | 1_L \rangle = -| 1_L \rangle$$

This is the smallest code encoding a one-qubit state and protecting against one-qubit errors

Error syndrome

- There are 15 single-qubit errors
- The error syndromes can take $2^4 = 16$ distinct values

	$I^{\otimes 5}$	X_1	X_2	X_3	X_4	X_5	Z_1	Z_2	Z_3	Z_4	Z_5	Y_1	Y_2	Y_3	Y_4	Y_5
	0															
M_2	0	0	0	1	1	0	0	1	0	0	1	0	1	1	1	1
M_3	0	0	0	0	1	1	0	0	1	0	0	1	0	1	1	1
M_4	0	1	0	0	0	1	1	0	0	1	0	0	1	0	1	1

- The 15 errors + no error state are one-to-one to the syndrome values
- The five-qubit code is nondegenerate and perfect

Applications

Five-qubit code as quantum secret sharing

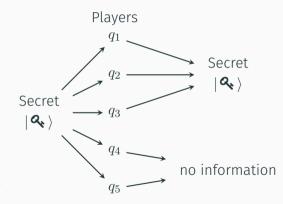
 Five-qubit code has a nice structure known as quantum secret sharing (QSS)

Logical qubit	\rightarrow	Secret
Five qubits	\rightarrow	Players

• Any set of three players *A* (and more) can reconstruct the secret:

$$\exists U_A$$
 s.t. $(U_A \otimes I_{ar{A}}) |\psi_L
angle = |\psi
angle \otimes |\chi_A
angle$

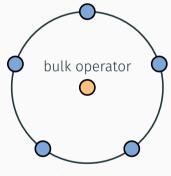
 $(|\chi_A\rangle$: product of EPR pairs)



Toy model of holography

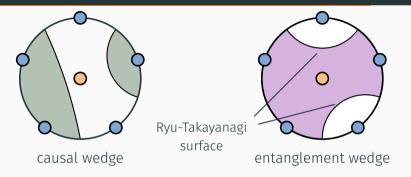
• Five-qudit code as a model of holography

- Logical qubit \rightarrow Bulk operator
 - Five qubits \rightarrow Boundary operators
 - QSS \rightarrow Reconstruction of bulk op. from a bdy subreagion



boundary operators

Holography and entanglement wedge



- Entanglement wedge reconstruction conjecture: In holographic models, bulk operators in an entanglement wedge can be reconstructed from operators on the boundary
- QSS property implies entanglement wedge reconstruction

Realization of stabilizer code in physical system

• For stabilizer generators M_i $(i = 1, \dots, n - k)$, the Hamiltonian whose ground state equals the code subspace is given by

$$H = -\sum_{i} J_i M_i \qquad J_i > 0$$

- Example: *n* qubit repetition code ([[*n*, 1]] code) \Rightarrow $M_i = Z_i Z_{i+1}$
 - Realized by 1d ferromagnetic Ising model:

$$H = -\sum_{i} J Z_i Z_{i+1} \qquad J > 0$$

• Ground states spanned by $\ket{0_L} = \ket{0}^{\otimes n}$, $\ket{1_L} = \ket{1}^{\otimes n}$:

$$|\text{GS}\rangle = a |0_L\rangle + b |1_L\rangle$$
 $(|a|^2 + |b|^2 = 1)$

• Stabilizer generators:

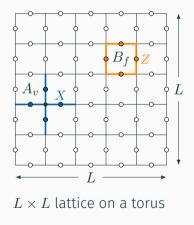
$$A_v = \prod_{e \in v} X_e$$
, $B_f = \prod_{e \in f} Z_e$

- $\exists 2L^2 2$ generators $(\prod_v A_v = 1, \prod_f B_f = 1)$ $\Rightarrow [[2L^2, 2]]$ quantum code
- Hamiltonian

$$H = -J_e \sum_{v} A_v - J_m \sum_{f} B_f$$

 $\Rightarrow \mathbb{Z}_2$ gauge theory

Locate 1 qubit on each edge $\Rightarrow \exists 2L^2$ qubits in total



v: vertex, e: edge, f: face

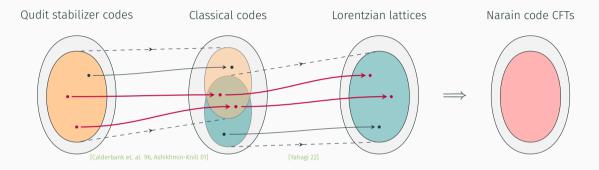
• It has been well-known that 2d CFTs can be constructed from certain classical codes [Frenkel-Lepowsky-Meurman 88, ArneDolan-Goddard-Montegue 90, 94, Gaiotto-Johnson-Freyd 18, Kawabata-Yahagi 23, · · ·]

Classical codes \longrightarrow Euclidean lattices \longrightarrow Chiral CFTs

• Recently, this construction was generalized to quantum codes [Dymarsky-Shapere 20,

Yahagi 22, Kawabata-TN-Okuda 22, Alam-Kawabata-TN-Okuda-Yahagi 23]

Quantum codes \longrightarrow Lorentzian lattices \longrightarrow Non-chiral CFTs



- The resulting CFTs are bosonic CFTs of Narain type
- Some of them yield SUSY CFTs by fermionization [Kawabata-TN-Okuda 23]

Summary

The structure of QEC has senn applications in high energy physics

Holography:

There is a class of QEC known as holographic codes which admit a holographic interpretation [Pastawski-Preskill 17, · · ·]

• QFT:

There are examples of QFTs with QEC structures, including discrete gauge theory, topological phases, fractons, code CFTs, ...

More applications of QEC to QFT?