

FERMILAB-SLIDES-24-0034-SQMS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359

Wavelike Dark Matter Searches with SRF Cavities and Superconducting Qubits at SQMS

Raphael Cervantes

SQMS, Fermilab

Outline

- 1. Motivation for ultra-high Q haloscopes
- 2. SERAPH: SRF haloscopes for wavelike dark matter searches
 - 1. Dark photon dark matter searches.
 - 2. Widely-tunable SRF cavities.
 - 3. Mitigating SQL noise with transmon qubits.
 - 4. Axion searches with magnetically-resilient SRF cavities

SQMS and Fermilab

Credit: A. Grasselino

How far can we push quantum sensors and superconducting technology for fundamental physics searches?

SUPERCONDUCTING QUANTUM

Quantum Sensing: new windows into fundamental physics

IATERIALS & SYSTEMS CENTER

For this talk, we focus on dark matter

What is Dark Matter? Can it be Axions? Dark Photons?

Microwave Axion Photon Hidden Microwave Photon Photon **Magnetic Field** Credit: A. Dixit Feeble interaction with photons. We can look for that.

Haloscope Search for Dark Matter

Microwave cavities can be used to detect dark photons and axions.

Dark photon searches don't need B-field.

Looking for $< 10^{-24}$ W signal over wide range of frequencies.

No axions were found (yet).

No discovery, but still progress because of the excluded parameter space. But a lot more

parameter space left to explore.

MATERIALS & SYSTEMS CENTER

No dark photons have been found yet either.

3/7/2024 9

SRF Cavities for Dark Matter Searches

Compared to copperbased searches

Credit: N. Du

SQMS $\rightarrow Q \approx 10^{10}$

ADMX and CAPP $\rightarrow Q \approx 10^5$

High Q allows for larger signal and lower noise floor. **Possibly factor 10⁵ increase in instantaneous scan rate.**

Instantaneous scan rate is proportional to \mathbf{Q}_L

More details: arXiv:2208.03183

For virialized axions $\frac{\mathrm{d}f}{\mathrm{d}t} \sim Q_L Q_{DM} \left(\frac{\eta \chi^2 m_{A'} \rho_{A'} V_{eff} \beta}{\mathrm{SNR}T_n (\beta + 1)}\right)^2$ even if $Q_L \gg Q_{DM}$ Signal power $P_s \propto \min(Q_L, Q_{DM})$ Noise power reduces with Q₁. Tuning steps $\Delta f \propto \Delta f_{DM}$. Cavity sensitive to distribution of possible DM rest masses.

There's a catch though...

Superconductors don't like magnetic fields (Meissner effect). Magnetic fields can destroy superconductivity.

Credit: TED

We need the magnetic field to look for axions. More on this later, but we can still use superconducting cavities without a magnetic field to look for dark photons.

SERAPH: SupERconducting Axion and Paraphoton Haloscope

Family of SQMS SRF haloscope experiment. Name works on different levels.

Seraphine

SERAPHv1: Parasitic Search for Dark Photons

Excluded Dark Photon Parameter Space

In review purgatory. Measurements recently performed to address reviewer comments.

arXiv:2208.03183

Deepest sensitivity: Ultrahigh Q for Dark photon DM

DPDM search in DR with 1.3 GHz cavity with $Q_0 \approx 10^{10}$. Deepest exclusion to wavelike DPDM by an order of magnitude. Next steps:

- Tunable DPDM search from 4-7 GHz ("low hanging fruit")
- Implement photon counting to subvert SQL noise limit.

Noise calibration with Variable Temperature Stage

Measure Q with decay measurement

Microphonics

- Measured with self-excitation loop and phase noise analyzer+spectrum analyzer.
- 25 Hz RMS
- Mitigated by turning off pulse tubes (7 Hz RMS), but not viable for a dark matter search.

FFT of PNA measurement

Microphonics and Frequency Modulation

Creates modulation of dark matter signal. Power gets spread into sidebands.

Microphonics and Frequency Modulation

Creates modulation of dark matter signal. Power gets spread into sidebands.

Modulation Frequency f_m (Hz)	Detuning Amplitude f_{Δ} (Hz)	Modulation Index $\frac{f_m}{f_{\Delta}}$	Carrier amplitude (dBc)	Sideband amplitude (dBc)
14.3	5.5	0.4	-0.32	-14.5
57.2	18.2	0.3	-0.22	-16.1

Carrier band attenuated by 0.54 dBc. DM signal attenuated $\eta \approx 0.88$

Might recover if analysis looks for sidebands.

Tunable search with 1.3 GHz Cavity (SERAPH v1.1)

 $T_{cav} = 1.4 \text{ K}, Q_L = 2.4e8. \text{ Very}$ overcoupled.

Similar experiment posted by Chinese collaboration

SRF Cavity Searches for Dark Photon Dark Matter: First Scan Results

Zhenxing Tang,^{1,2,*} Bo Wang,^{3,*} Yifan Chen,⁴ Yanjie Zeng,^{5,6} Chunlong Li,⁵ Yuting Yang,^{5,6} Liwen Feng,^{1,7} Peng Sha,^{8,9,10} Zhenghui Mi,^{8,9,10} Weimin Pan,^{8,9,10} Tianzong Zhang,¹ Yirong Jin,¹¹ Jiankui Hao,^{1,7} Lin Lin,^{1,7} Fang Wang,^{1,7} Huamu Xie,^{1,7} Senlin Huang,^{1,7} and Jing Shu^{1,2,12,†} ¹School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ²Beijing Laser Acceleration Innovation Center, Huairou, Beijing, 101400, China ³International Centre for Theoretical Physics Asia-Pacific. University of Chinese Academy of Sciences, 100190 Beijing. China ⁴Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ⁶School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuguan Road, Beijing 100049, China ⁷Institute of Heavy Ion Physics, Peking University, Beijing 100871, China ⁸Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ⁹Key Laboratory of Particle Acceleration Physics and Technology. Chinese Academy of Sciences, Beijing 100049, China ¹⁰Center for Superconducting RF and Cryogenics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ¹¹Beijing Academy of Quantum Information Sciences, Beijing 100193, China ¹²Center for High Energy Physics, Peking University, Beijing 100871, China (Dated: May 26, 2023)

We present the first use of a tunable superconducting radio frequency cavity to perform a scan search for dark photon dark matter with novel data analysis strategies. We mechanically tuned the resonant frequency of a cavity embedded in the liquid helium with a temperature of 2 K, scanning the dark photon mass over a frequency range of 1.37 MHz centered at 1.3 GHz. By exploiting the superconducting radio frequency cavity's considerably high quality factors of approximately 10^{10} , our results demonstrate the most stringent constraints to date on a substantial portion of the exclusion parameter space, particularly concerning the kinetic mixing coefficient between dark photons and electromagnetic photons ϵ , yielding a value of $\epsilon < 2.2 \times 10^{-16}$.

FIG. 1: Left: the single-cell SRF cavity equipped with frequency tuner. Right: Schematic of the microwave electronics for DPDM searches. The VNA measures the net amplification factor G_{net} of the amplifier circuit consisting of an isolator, a HEMT amplifier and two roomtemperature amplifiers. The noise source and the spectrum analyzer calibrate the resonant frequencies f_0^i . The time-domain signals from the SRF, with sequential amplification, are finally recorded by the spectrum analyzer.

LHe vertical test stand facility at Fermilab

Deepest sensitivity: Ultrahigh Q for Dark photon DM

DPDM search in DR with 1.3 GHz cavity with $Q_L \approx 10^{10}$. Deepest exclusion to wavelike DPDM by an order of magnitude. Next steps:

- Tunable DPDM search from 4-7 GHz ("low hanging fruit")
- Implement photon counting to subvert SQL noise limit.

Simulated and measured modes

Straightforward tuning. No mode crossings. Good agreement between measurement and simulation.

26 3/7/2024 R. Cervantes I SQMS Dark Matter Searches with SRF Cavities

Measured Unloaded Q with decay measurement

Simulated effective volume

Lots of microphonics in a helium bath

Microphonics with SEL + Phase Noise Analyzer

Can destabilize microphonics if there's too much energy in the system.

The RMS of the microphonics is 4.6 kHz!

Currently brainstorming how to mitigate.

Subverting SQL noise with qubit-based photon counting

SQL noise: hf/k 240 mK @ 5 GHz

dominates compared to 30 mK thermal photons.

Regularly perform photon counting with dispersive measurements.

Superconducting qubit in SRF cavity.

Quantum protocols counts photons non-destructively.

Detour: The Transmon Qubit

Transmon device image

32 3/7/2024 R. Cervantes I SQMS Dark Matter Searches with SRF Cavities

Detour: The Transmon Qubit

Count Photons with Superconducting Qubits

$${\cal H}/\hbar = \omega_c a^\dagger a + {1\over 2} (\omega_q + 2\chi a^\dagger a) \sigma_z$$

Qubit frequency depends on # of photons.

Can avoid quantum noise if you just count the number of photons and don't try to measure their phase.

We can use superconducting qubits to count microwave photons inside the cavity.

Current photon counting scheme

Measurements performed by Taeyoon Kim

Qubit T1 ~ 150 µs. Readout rate is 1/ms

Parity measurement maps cavity state onto qubit

R. Cervantes I SQMS Dark Matter Searches with SRF Cavities 36 3/7/2024

Photon counting results

Parity measurement where qubit is prepared in ground state and we apply two $+\pi/2$ pulses.

With perfect readout: lg> corresponds to 1 photon. le> corresponds to 0 photon.

Can use fidelity matrix and characteristics of the system to derive dark photon limit.

Why we need photon counting

$$V_c = 136 L \times \left(\frac{f}{1 G H z}\right)^{-3}$$
$$Q_L = 80\ 000 \times \left(\frac{f}{1 G H z}\right)^{-\frac{2}{3}}$$
$$n_c = \frac{1}{\exp\left(\frac{hf}{k_b T}\right) - 1}$$

SQL noise dominates at higher frequencies. Need to mitigate SQL.

Would take long time to scan DFSZ with single cavity

$$V_c = 136 L \times \left(\frac{f}{1GHz}\right)^{-3}$$
$$Q_L = 80\ 000 \times \left(\frac{f}{1GHz}\right)^{-\frac{2}{3}}$$
$$n_c = \frac{1}{\exp\left(\frac{hf}{k_bT}\right) - 1}$$

Note: photon counting estimate doesn't yet take into account counter errors. Numerical estimates sensitive to engineering parameters.

If this would work in an 8T field

Sensitivity to **QCD axion** with single cavity and HEMT.

Just make $Q \sim 10^{10}$ cavities work in magnetic fields!

Nb₃Sn Cavities in Multi-Tesla Field R&D at Fermilab

Q_0 of 5×10^5 at 6 T, 4.2 K, 3.9 GHz

	Recen	Rece	it Subjec	ts Accept	ed Collection	ns Authors	Referees	Search
Open Access		00000						

S. Posen, M. Checchin, O.S. Melnychuk, T. Ring, I. Gonin, and T. Khabiboulline Phys. Rev. Applied **20**, 034004 – Published 5 September 2023

FNAL Nb₃Sn Cavities for ADMX and INFN

Initial R&D at Fermilab

High-Quality-Factor Superconducting Cavities in Tesla-Scale Magnetic Fields for Dark-Matter Searches

S. Posen, M. Checchin, O.S. Melnychuk, T. Ring, I. Gonin, and T. Khabiboulline Phys. Rev. Applied **20**, 034004 – Published 5 September 2023

Nb₃Sn tuning rod for ADMX Sidecar sent to U. Washington (w/ LLNL)

ADMX-EFR at Fermilab

Hybrid dielectric-Nb₃Sn cavity for INFN QUAX haloscope SOM S²⁰⁰⁰ ^{SUPERCONDUCTING QUANTUM} MATERIALS & SYSTEMS CENTER

 9 GHz Nb₃Sn cavity sent to INFN

 42
 3/7/2024

 R. Cervantes I SQMS Dark Matter Search Frascatt for the sting in 8 T fridge

SQMS Center

This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359

Summarize

- Ultra-high Q cavities have achieved unprecedented sensitivity to wavelike DPDM and can boost by scan rate by orders of magnitude.
- Progress towards photon counting and high-Q cavities in magnetic fields for axion searches. Will be enabling technologies for future axion searches.

