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Agenda

• Part 1: Quantum Computing for Machine Learning
• Part 2: Quantum Machine Learning for HEP
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• Speed-up and complexity
• Sample efficiency
• Representational power
• Energy efficiency???

• Evaluate performance on realistic use cases
• QPU as accelerators within classical 

infrastructure?

QML: Quantum computing to “improve” ML

Study classical intractability: 
Focus on quantum circuits that are not 
efficiently simulable classically?

Cerezo, Marco, et al. "Variational quantum 
algorithms."Nature Reviews Physics3.9 (2021)
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Quantum Machine Learning Lyfecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

Data Reduction
Data Encoding [1,2,3]

[1] Robust data encodings for quantum classifiers, Ryan 
LaRose and Brian Coyle, Phys. Rev. A 102, 032420 
[2] Quantum convolutional neural network for classical data 
classification, https://arxiv.org/pdf/2108.00661.pdf
[3] Quantum Support Vector Machines for Continuum 
Suppression in B Meson Decays, 
https://arxiv.org/abs/2103.12257

The quantum advantage of 
many known QML 

algorithms is impeded by an 
input or output bottleneck 

Read Out

Trainability (BP…)
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Models

Gradient-free or gradient-based optimization
Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

Representer theorem:
Implicit models achieve better accuracy3

Explicit models exhibit better generalization

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv:2110.13162 (2021).

Energy-based ML (ex. QBM)
Build networks of stochastic binary units and 
optimise their energy. 
QBM has  quadratic energy function that follows 
the Boltzman distribution (Ising Hamiltonian)
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Parameter optimization
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Source:https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift/

The parameter-shift rule (gradient-based)

Compute partial derivative of variational circuit parameter 𝜃, alternative to 
analytical gradient computation and classical finite difference rule (numerical 
errors and resource cost considerations)

Evaluate Quantum Circuit twice at shifted 
parameters to compute gradient 

06.03.24

See C. Rieger’s summer students lecture



Parameter optimization
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https://pennylane.ai/qml/demos/
tutorial_spsa

Simultaneous Perturbation Stochastic Approximation (SPSA)
(gradient-free)

If gradient computation not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 

Gradient is approximated by two sampling steps and parameters are perturbed in all 
directions simultaneously 

Iterative update rule 
comparable to classical 
stochastic gradient descent 
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See C. Rieger’s summer students lecture



Challenges when using Parametrized Quantum Circuits
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• Efficient data handling and data embedding

• Find balance: Generalization and representational power vs. Convergence

• Problem of barren plateaus and vanishing gradients in optimization landscape 

• How well can we survey the Hilbert space (expressibility)?

• Current hardware limitations 

• Limited number of qubits and connectivity à data dimensionality reduction

• Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

• Efficient interplay between classical and quantum computer

• ….
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Classical gradients vanish exponentially with the 
number of layers (J.McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent 
between batches.

Quantum gradient decay exponentially in the number 
of qubits (number of graph paths is exponential in the 
number of gates)

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., 

arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et 

al., Physical Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 

(2021))

Gradients decay and Model Convergence

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

J. McClean et al., arXiv:1803.11173

Quantum 
Convolutional NN:
Convolution: general 
SU(4)
Pooling: reduces 
numer of qubitsLarge number of measurements: 1/𝜖2 measurements to 

estimate a cost to precision 𝜖
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Generative Models

Quantum Circuit Born Machine
Sample variational pure state | ⟩ψ(θ) by projective measurement 
through Born rule: 𝐩𝛉 𝐱 = |,𝐱|𝛙(𝛉 ⟩) |𝟐 .

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.
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Learn probability distribution that best describes a data set

𝑥

p(
𝑥) p(
𝑥)

𝑥

Deeper circuits learn better 
representations.. 
Or don’t they ??



Explicit Models have access to PDF in 
polynomial time

• Use explicit losses that are defined by 
probabilities

• Ex. TN or autoregressive models

Implicit models do not have access to 
PDF. Can sample from it

• Use implicit losses built on samples
• Ex. GAN, QBM, VAE… QCBM…

Implicit and Explicit Models
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Classified according to whether or not they have access to the propability distribution function

Ex. KL Divergence

Ex. MMD

M. Rudolph et al. , QTML 2023

Strong impact on trainability for generic models



Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ) by 
projective measurement through Born 
rule: 𝐩𝛉 𝐱 = |,𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN

Multiple implementations, mostly classical-quantum hybrid
Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM 
Network of stochastic binary units with a quadratic energy function that 
follows the Boltzman distribution (Ising Hamiltonian)

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.

Typical metrics:
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Generative QML and trainability barriers
Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). 
Trainability barriers and opportunities in quantum generative modeling. arXiv:2305.02881.

exponentially larger number of shots is 
required to keep accuracy of explicit 

losses



Trainability
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MMD: Exact Loss Variance MMD: Training loss

KL: Training loss



Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.

Benchmark: QCBM for energy depositions

Sample pictures:



Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers 
and opportunities in quantum generative modeling. arXiv:2305.02881.

Benchmark: QCBM for energy depositions

Sample pictures:



Agenda
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• Part 1: QC for Quantum Machine Learning
• Part 2: QML for HEP. 
• Challenges

• Input dimensionality
• Symmetries and data structures
• Discrete variables

06.03.24



Adapt to the scale 
of the problem

Take into account
hardware roadmaps

Define fair 
benchmarking

Re-think 
algorithms 

design

Quantum ML for HEP
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Quantum ML for 
realistic data 
processing at next 
generation 
colliders?

06.03.24
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Data dimensionality 
reduction
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Analysis
Discrimination of the signal over the overwhelming background 

Features

• For the each jet we have 8 features: (pT,η,ϕ,E,b tag,px,py,pz)

• For MET we have 4 features: (pT,px,py,ϕ)

• For the lepton (electron or muon) we have 7 

features: (pT,η,ϕ,E,px,py,pz)
#features = 8×7(jets)+7(1lepton)+4(MET) = 67

Analysis setup
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Input dimensionality reduction through 
an Auto-Encoder projects to a lower 
dimension latent space (8,16)

Data encoding circuit serving as feature map for the 8-qubit 
QSVM implementation. 

Quantum SVM for Higgs Classification 



Guided Quantum Compression 
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V. Belis et al., arxiv: 2402.0952 

Two hybrid quantum-classical strategies:
GQC: Joint  training
2Steps: The data compression step is independently trained



Latent Space Representation
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2 Steps GQC



Results
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b-tag features are high 
level features containing 
information about the 
quark content

Including b-tag No  b-tag

CHALLENGE: DATA COMPRESSION 

compression method has 
significant impact on the 
classifier performance. 
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Leveraging 
symmetries 



Geometric Quantum Machine Learning 
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§ Given a data point 𝑥 ∈ 𝒳 and its label y ∈ 𝒴
§ Estimate the prediction  𝑦! from observable 𝑂: 𝑦! 𝑥 = 𝜓 𝑥 𝒰" 𝜃 𝑂 𝒰(𝜃) 𝜓(𝑥)
§ Given a symmetry group 𝔊 on the data space 𝒳
§ 𝕲 – Invariance :  For all 𝑥 ∈ 𝒳 and 𝑔 ∈ 𝔊

𝑦! 𝑔 𝑥 = 𝑦! 𝑥
§ Final prediction 𝑦! is invariant if: 

S. Y. Chang et al., IEEE QCE23

Equivariant data embedding: 

For  feature map 𝜓:𝒳 → ℋ

𝜓 𝑔 𝑥 ) = 𝑉# 𝑔 𝜓 𝑥 0⟩

𝑉# 𝑔 = Representation of 𝑔 on ℋ
induced by 𝜓

Equivariant ansatz:

For operators generated by a fixed 
generator 𝐺 as 𝑅$ 𝜃 = exp −𝑖𝜃𝐺 : 

𝑅$ 𝜃 , 𝑉#[𝑔] = 0 ↔ 𝐺, 𝑉#[𝑔] = 0
Invariant Measurement:
𝑉#
% 𝑔 𝑂𝑉# 𝑔 = 𝑂
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Equivariant Quantum CNN 

06.03.24

§ Construct equivariant quantum CNN under 
rotational & reflectional symmetry  (p4m)

§ Improved generalization power

Extended MNIST 
Image classification: 

(digits 4,5) 

ℋ = −𝐽'
⟨"#⟩

𝜎"𝜎#

Ising spins phase 
classification :
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Loss landscape plotted with orqviz

Non-convexity of loss landscape
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Non-equivariant QCNN ApprEquivQCNN



Noise  effects on EQNN wrt discrete 
symmetry groups e.g. 

𝒁𝟐: R(σ)⋅(xi) = −xi

Bit Flip, Depolarizing (Pauli) and 
Amplitude Damping channels 

Noise induced symmetry breaking
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Adaptive threshold classificationEQNN performance drops with AD

EQNN-Z native:  Z0Z1 commutes with the AD channel generator, but native gate set is limited on hardware!

DP should not affect symmetry

Tüysüz, Cenk, et al. "Symmetry breaking in geometric quantum machine 
learning in the presence of noise." arXiv preprint arXiv:2401.10293 (2024).



Tests on ibm_cairo
Confirms AD channel is dominant
Symmetry breaking is linear in the number of layers

Tests on ibm_cusco using hardware efficient ansatz and 
pulse efficient gate implementation

create RZX(θ) gates by controlling pulses in a continuous way

LM reaches 50% (random) at around 50 qubits

Symmetry breaking on hardware
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Number of layers

(Number of layers log2N)

Label Misassignment uses 
adaptive thresholds

Number of qubits

ibm_cairo

ibm_cairo



A full pipeline: QML analysis of quantum data 
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Cea, M., et al. "Exploring the Phase Diagram of the quantum one-
dimensional ANNNI model." arXiv preprint arXiv:2402.11022 (2024).

Connect QML and TN as different steps in the  phase diagram reconstruction process for a ANNNI model. 
Comparison between supervised and unsupervised QML 

Use density matrix renormalization group (DMRG) for simulation of one dimensional multi-body systems (training data for 
the QML algorithms)

• Faster state preparation then VQE

Thanks to the TN characterization of the wave function, we can run a systematic study on QML performance



Phase classification result
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Supervised QML

Unsupervised QML

Cea, M., et al. "Exploring the Phase Diagram of the quantum one-
dimensional ANNNI model." arXiv preprint arXiv:2402.11022 (2024).

Supervised QML does not generalize to the 
floating phase unless explicitly see at training time
With max 20 spins the systems still experiences
significant limitations due to its constrained size



Open questions
• Quantum computing offers great opportunties while HEP provides challenging 

problems
• What are the most promising applications?
• How do we define performance and validate results on realistic use cases?

• Experimental data has high dimensionality
• Can we train Quantum Machine Learning algorithms  effectively?
• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws
• Can we leverage them to build better algorithms? 

CERN is committed to creating impact on QT research in the coming years
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Thanks!

34https://quantum.cern/

https://openlab.cern/quantum

https://quantum.cern/
https://openlab.cern/quantum


Lectures and Hands-On at CERN

• «A practical Introduction to quantum computing», Elias Combarro
https://indico.cern.ch/event/970903/
• «Introduction to quantum computing », Heather Grey
https://indico.cern.ch/event/870515/
• A set of two hands-on (introduction) sessions part of the 2023 openlab 

summer student lectures series 
https://indico.cern.ch/event/1293871/
https://indico.cern.ch/event/1293874/
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