# **Quantum Machine Learning** *Opportunities and challenges in HEP*



Sofia Vallecorsa CERN QTI Coordinator



- Part 1: Quantum Computing for Machine Learning
- Part 2: Quantum Machine Learning for HEP



# QML: Quantum computing to "improve" ML

- Speed-up and complexity
- Sample efficiency
- Representational power
- Energy efficiency???
- Evaluate performance on realistic use cases
- QPU as accelerators within classical infrastructure?

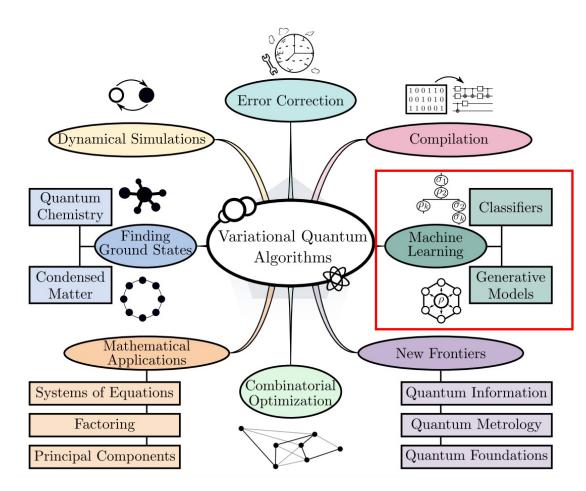
Study classical intractability: Focus on quantum circuits that are **not** efficiently simulable classically?

OUANTUM

TECHNOLOGY

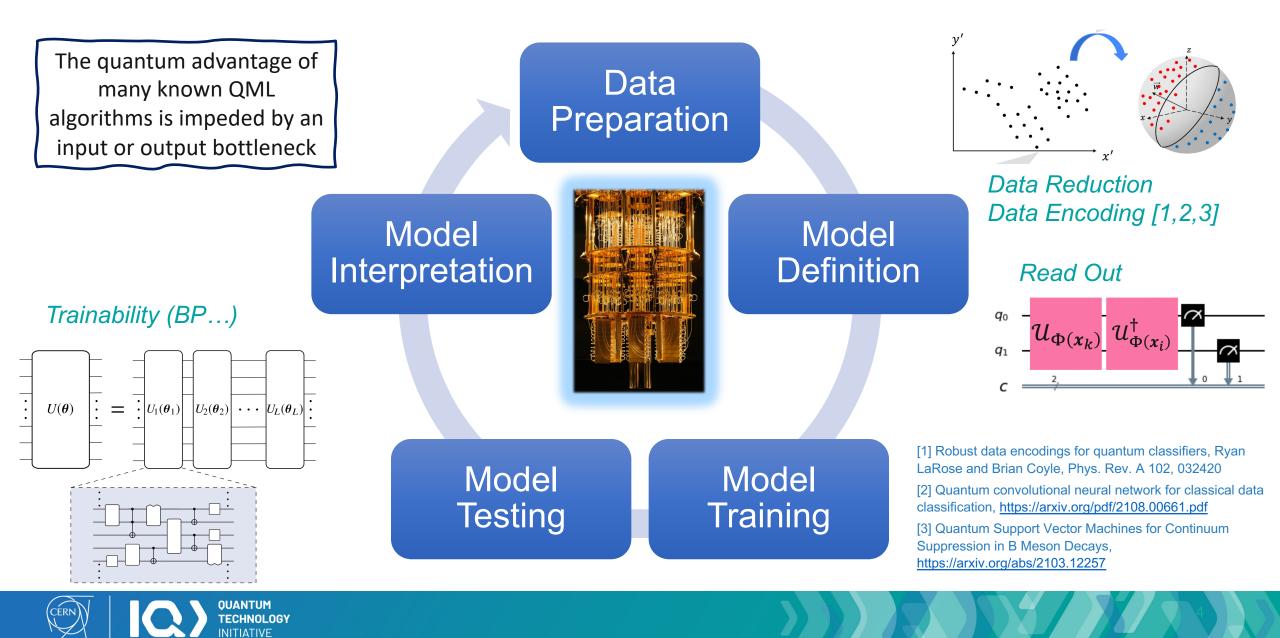






Cerezo, Marco, *et al. "Variational quantum algorithms."* Nature Reviews Physics3.9 (2021)

### **Quantum Machine Learning Lyfecycle**

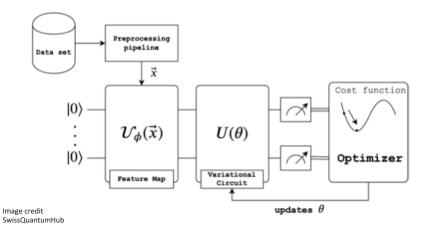


### **Models**

### Variational algorithms (ex. QNN)

Gradient-free or gradient-based optimization Data Embedding can be learned

Ansatz design can leverage data symmetries<sup>1</sup>



#### **Representer theorem:**

Implicit models achieve better accuracy<sup>3</sup>

#### Explicit models exhibit better generalization

**OUANTUM** 



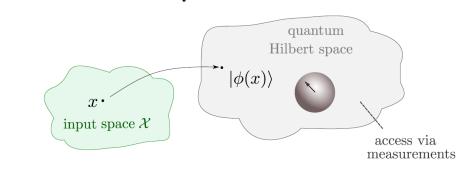
06.03.24

### Kernel methods (ex. QSVM)

#### Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data structures<sup>2</sup>



### Energy-based ML (ex. QBM)

Build networks of **stochastic binary units** and optimise their energy. QBM has quadratic energy function that follows the Boltzman distribution (Ising Hamiltonian)

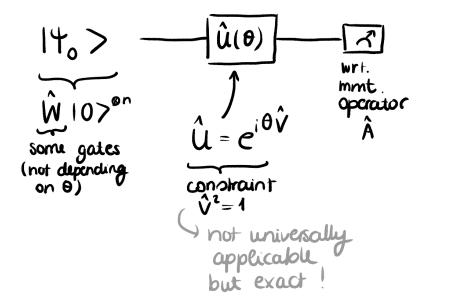
<sup>1</sup> Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020. <sup>2</sup> Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." *arXiv:2105.03406* (2021). <sup>3</sup>Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." *arXiv:2110.13162* (2021).

### **Parameter optimization**

$$\theta \rightarrow \theta - \eta \nabla_{\theta} f$$

The parameter-shift rule (gradient-based)

Compute partial derivative of variational circuit parameter θ, alternative to analytical gradient computation and classical finite difference rule (numerical errors and resource cost considerations)



$$\Rightarrow \nabla_{\Theta} \langle \hat{A} \rangle = u \left[ \langle \hat{A} (\Theta + \frac{\pi}{\psi_{u}}) \rangle - \langle \hat{A} (\Theta - \frac{\pi}{\psi_{u}}) \rangle \right]$$

<sup>1</sup><Â(0)>

 Evaluate Quantum Circuit twice at shifted parameters to compute gradient

Source:https://pennylane.ai/qml/demos/tutorial\_stochastic\_parameter\_shift/



### **Parameter optimization**

# Simultaneous Perturbation Stochastic Approximation (SPSA) (gradient-free)

If gradient computation not possible, too resource-intensive,
or noise-robustness required (slower convergence but fewer function evaluations)
Gradient is approximated by two sampling steps and parameters are perturbed in all directions simultaneously

 $\leftarrow \Theta_{k} - a_{k} \hat{g}(\hat{\theta}_{k})$ 

stochastic estimate of Vaf

https://pennylane.ai/qml/demos/ tutorial\_spsa

Gradient descent /

\$ SPSA \$

Iterative update rule

comparable to classical

stochastic gradient descent

 $\begin{aligned} & y(\theta) = f(\theta) + \varepsilon \\ & \sim \text{random} \\ & \text{output perturbation} \\ & \hat{g}(\hat{\theta}_{k}) = \frac{y(\hat{\theta}_{k} + C_{k}\Delta_{k}) - y(\hat{\theta}_{k} - C_{k}\Delta_{k})}{2C_{k}\Delta_{k}} \\ & C_{k} \ge 0, \ \Delta_{k} = (\Delta_{k_{1}}, \Delta_{k_{2}}, \dots, \Delta_{k_{p}})^{T} \text{ perturbation vector} \\ & (\sim \text{randomly sampled} \\ & \text{from Zero-mean distr.}) \end{aligned}$ 

### **Challenges when using Parametrized Quantum Circuits**

- Efficient data handling and data embedding
- Find balance: Generalization and representational power vs. Convergence
  - Problem of barren plateaus and vanishing gradients in optimization landscape
  - How well can we survey the Hilbert space (expressibility)?
- Current hardware limitations
  - Limited number of qubits and connectivity  $\rightarrow$  data dimensionality reduction
  - Quantum Noise Effects (decoherence, measurement errors or gate-level errors)
  - Efficient interplay between classical and quantum computer



. . . .

# **Gradients decay and Model Convergence**

Classical gradients vanish exponentially with the number of layers (J.McClean *et al.*, arXiv:1803.11173)

• Convergence still possible if gradients consistent between batches.

#### Quantum gradient decay exponentially in the number of qubits (number of graph paths is exponential in the number of gates)

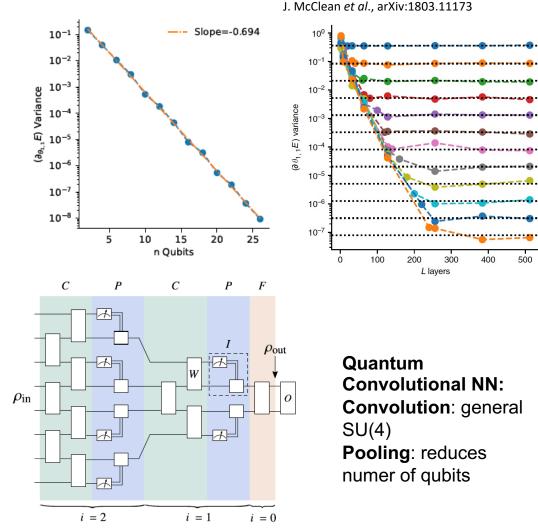
• Random circuit initialization

OUANTUM

- Loss function locality in shallow circuits (M. Cerezo *et al.*, arXiv:2001.00550)
- Ansatz choice: TTN, CNN (Zhang *et al.*, arXiv:2011.06258, A Pesah, *et al.*, *Physical Review X* 11.4 (2021): 041011. )
- Noise induced barren plateau (Wang, S *et al.*, Nat Commun 12, 6961 (2021))

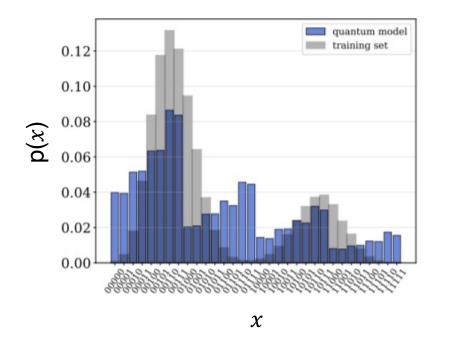
## Large number of measurements: $1/\epsilon^2$ measurements to estimate a cost to precision $\epsilon$



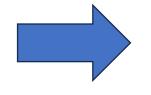


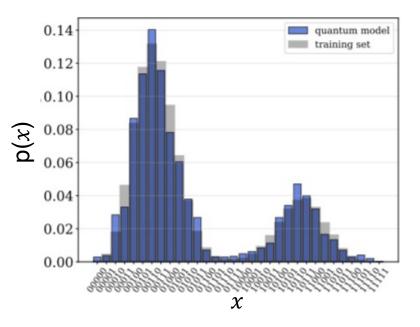
### **Generative Models**





Deeper circuits learn better representations.. Or don't they ??

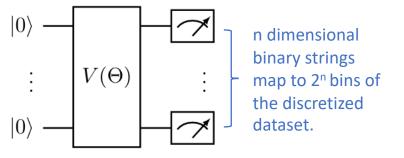




#### **Quantum Circuit Born Machine**

QUANTUM TECHNOLOGY

Sample variational pure state  $|\psi(\theta)\rangle$  by projective measurement through Born rule:  $p_{\theta}(x)=|\langle x|\psi(\theta)\rangle|^2$ .



### **Implicit and Explicit Models**

Classified according to whether or not they have access to the propability distribution function

# Explicit Models have access to PDF in polynomial time

- Use explicit losses that are defined by probabilities
- Ex. TN or autoregressive models

## Implicit models do not have access to PDF. Can sample from it

• Use implicit losses built on samples

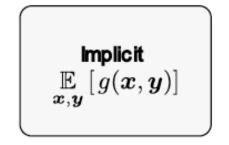
Strong impact on trainability for generic models

• Ex. GAN, QBM, VAE... QCBM...

 $\left( \begin{array}{c} \textbf{Explicit} \\ \sum\limits_{\boldsymbol{x}} f\left( \tilde{p}(\boldsymbol{x}), \tilde{q}_{\boldsymbol{\theta}}(\boldsymbol{x}) \right) \end{array} \right)$ 

#### Ex. KL Divergence

$$D_{ ext{KL}}(P\|Q) = \sum_i P(i) \, \logiggl(rac{P(i)}{Q(i)}iggr)$$



Ex. MMD

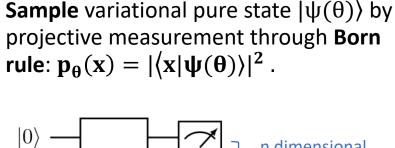
$$\mathrm{MMD}(\mathbb{P}_r, \mathbb{P}_g) = \left( \mathbb{E}_{\substack{\mathbf{x}_r, \mathbf{x}'_r \sim \mathbb{P}_r, \\ \mathbf{x}_g, \mathbf{x}'_g \sim \mathbb{P}_g}} \left[ k(\mathbf{x}_r, \mathbf{x}'_r) - 2k(\mathbf{x}_r, \mathbf{x}_g) + k(\mathbf{x}_g, \mathbf{x}'_g) \right] \right)^{\frac{1}{2}}$$



### **Quantum Generative Models**

Delgado and Hamilton, arXiv:2203.03578 (2022) Zoufal, et al., *npj Quantum Inf* **5**, 103 (2019) Leadbeater et al., *Entropy* **2021**, *23*, 1281. Amin, et al. *Physical Review X* 8.2 (2018): 021050.

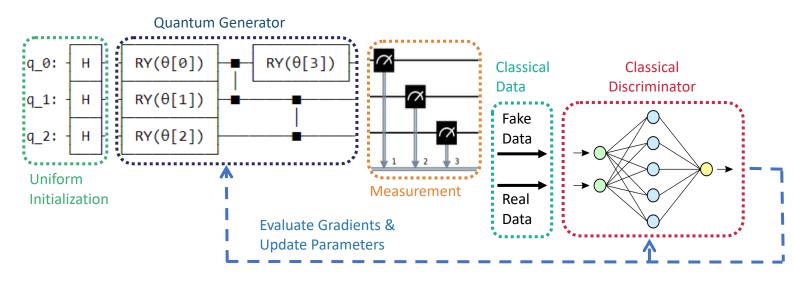
### QCBM



n dimensional binary strings map to 2<sup>n</sup> bins of the discretized dataset.

#### QGAN

Multiple implementations, mostly classical-quantum hybrid



### QBM

 $|0\rangle$ 

 $V(\Theta)$ 

Network of stochastic binary units with a quadratic energy function that follows the Boltzman distribution (Ising Hamiltonian)

$$H = -\sum_{a} b_a \sigma_a^z - \sum_{a,b} w_{ab} \sigma_a^z \sigma_b^z$$

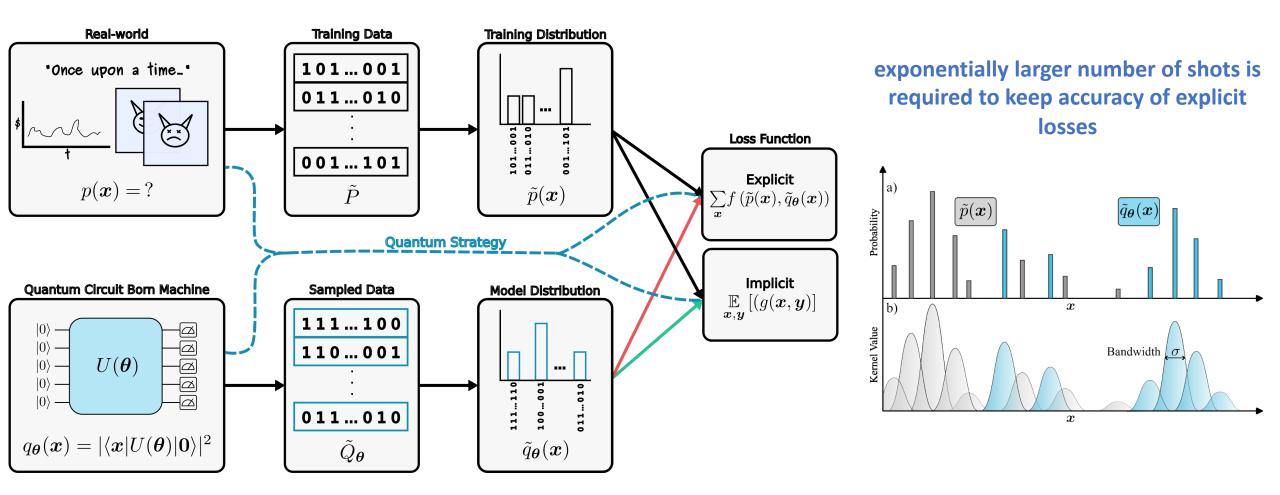


### **Typical metrics:**

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \log\left(\frac{P(i)}{Q(i)}\right)$$
$$\mathrm{MMD}(\mathbb{P}_{r}, \mathbb{P}_{g}) = \left(\mathbb{E}_{\substack{\mathbf{x}_{r}, \mathbf{x}_{r}^{\prime} \sim \mathbb{P}_{r}, \\ \mathbf{x}_{g}, \mathbf{x}_{g}^{\prime} \sim \mathbb{P}_{g}}}\left[k(\mathbf{x}_{r}, \mathbf{x}_{r}^{\prime}) - 2k(\mathbf{x}_{r}, \mathbf{x}_{g}) + k(\mathbf{x}_{g}, \mathbf{x}_{g}^{\prime})\right]\right)^{\frac{1}{2}}$$

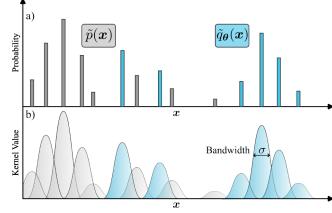
Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). **Trainability barriers and opportunities in quantum generative modeling.** *arXiv:2305.02881*.

# Generative QML and trainability barriers

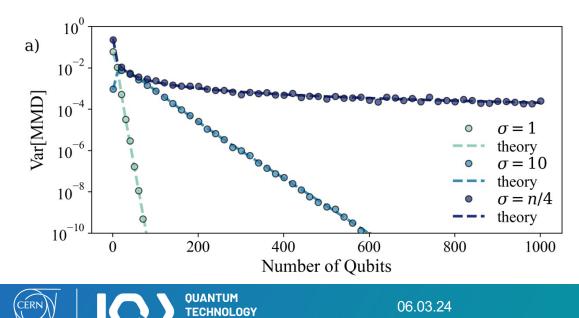




### **Trainability**

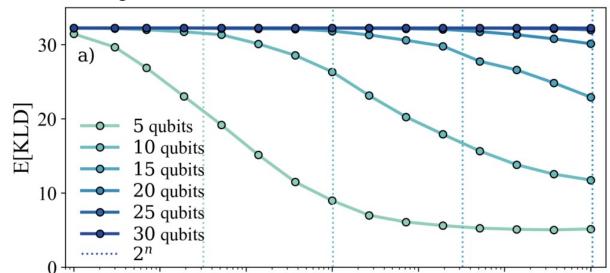


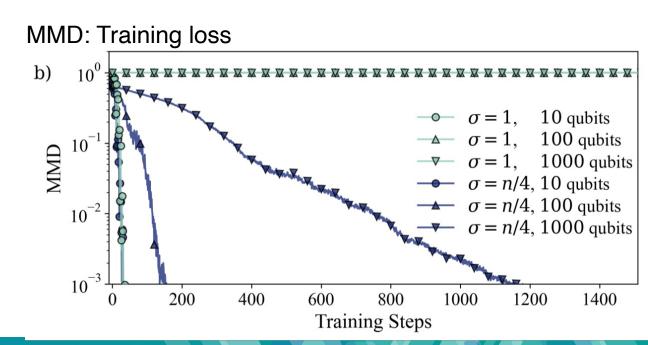
MMD: Exact Loss Variance



INITIATIVE

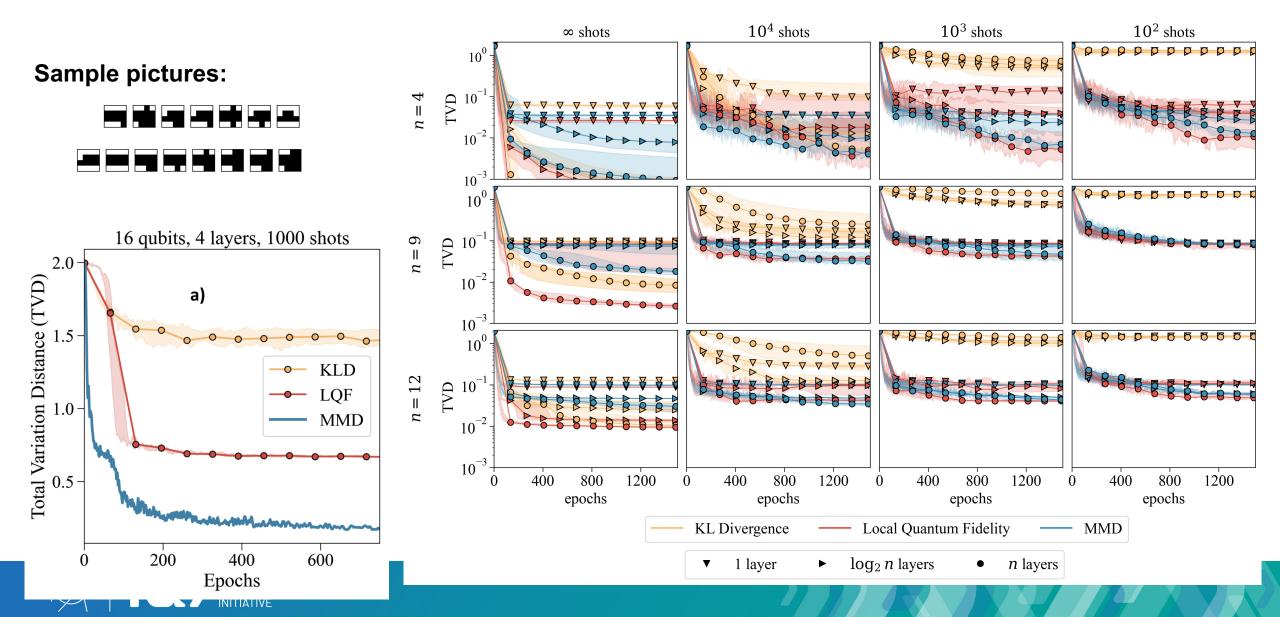
KL: Training loss





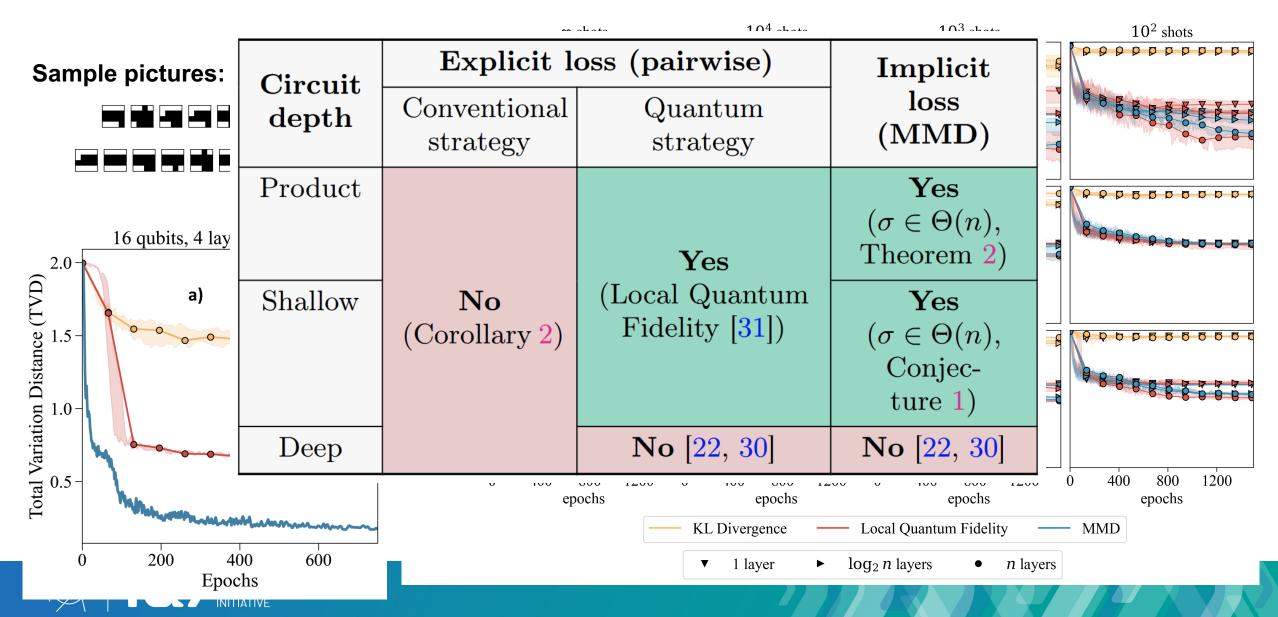
Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers and opportunities in quantum generative modeling. *arXiv:2305.02881*.

### **Benchmark: QCBM for energy depositions**



Rudolph, M. S., Lerch, S., Thanasilp, S., Kiss, O., Vallecorsa, S., Grossi, M., & Holmes, Z. (2023). Trainability barriers and opportunities in quantum generative modeling. *arXiv:2305.02881*.

### **Benchmark: QCBM for energy depositions**





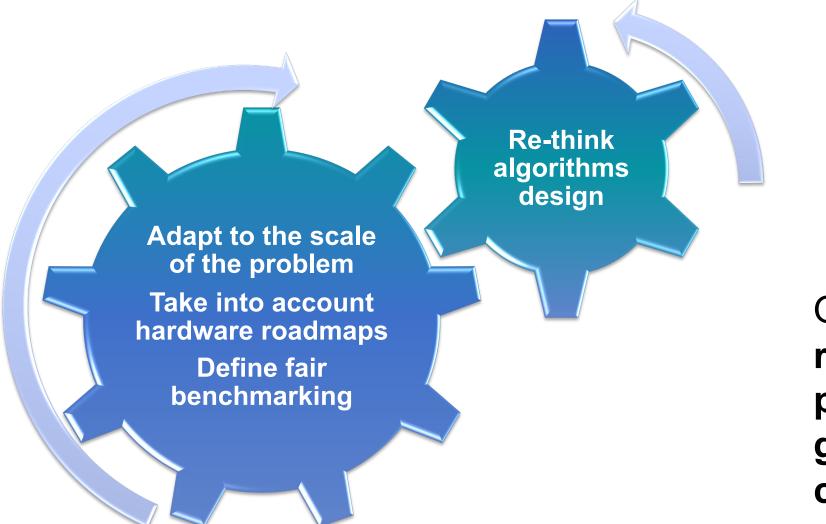
- Part 1: QC for Quantum Machine Learning
- Part 2: QML for HEP.
- Challenges
  - Input dimensionality
  - Symmetries and data structures
  - Discrete variables



# **Quantum ML for HEP**

QUANTUM TECHNOLOGY

NITIATIVE



Quantum ML for realistic data processing at next generation colliders?





# Data dimensionality reduction





### **Analysis setup**

#### Analysis

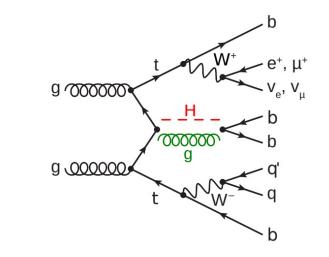
Discrimination of the signal over the overwhelming background

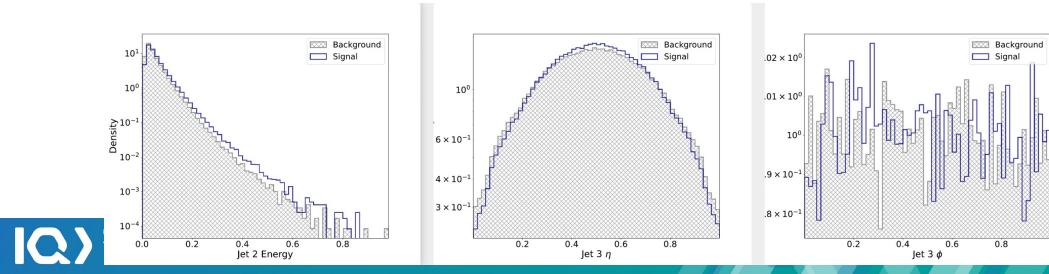
#### Features

- For the each jet we have 8 features: (pT,η,φ,E,b tag,px,py,pz)
- For MET we have 4 features: (pT,px,py,φ)
- For the lepton (electron or muon) we have 7

features: (pT,n, , E, px, py, pz)

*#features* = 8×7(*jets*)+7(1*lepton*)+4(*MET*) = 67



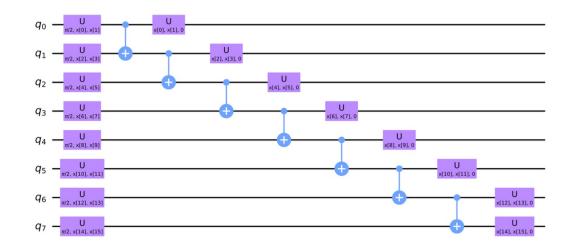


### **Quantum SVM for Higgs Classification**

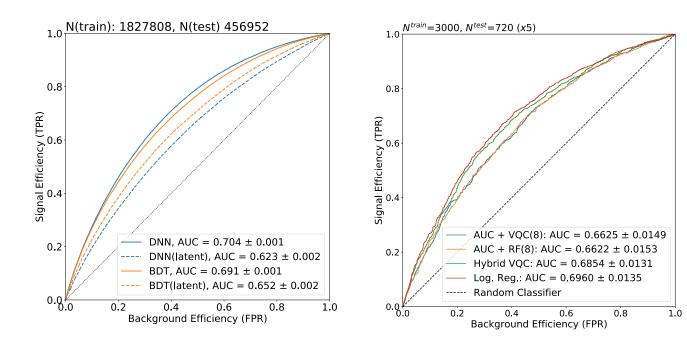
Input dimensionality reduction through an Auto-Encoder projects to a lower dimension latent space (8,16)

| Feature selection + Model | AUC             |
|---------------------------|-----------------|
| AUC + QSVM                | $0.66 \pm 0.01$ |
| PyTorch AE + QSVM         | $0.62 \pm 0.03$ |
| AUC + SVM rbf             | $0.65 \pm 0.01$ |
| PyTorch AE + SVM rbf      | $0.62 \pm 0.02$ |
| KMeans + SVM rbf          | $0.61 \pm 0.02$ |

| Feature selection + Model | AUC             |
|---------------------------|-----------------|
| AUC + QSVM                | $0.68 \pm 0.02$ |
| AUC + Linear SVM          | $0.67 \pm 0.02$ |
| Logistic Regression       | $0.68 \pm 0.02$ |

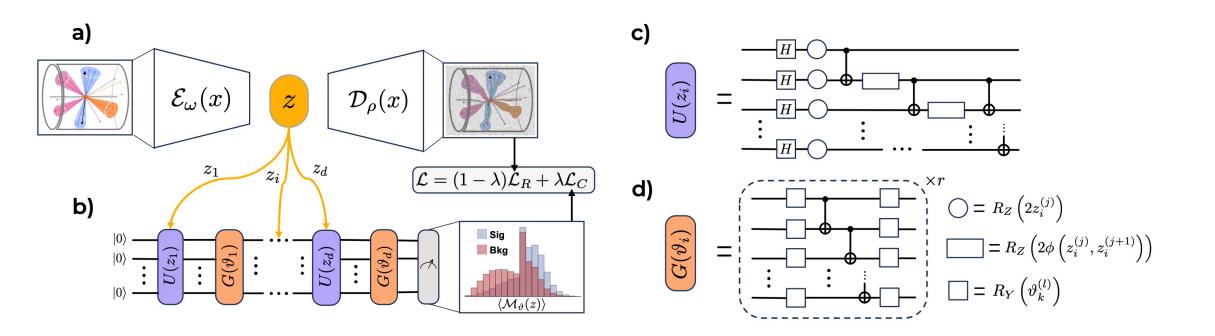


Data encoding circuit serving as feature map for the 8-qubit QSVM implementation.





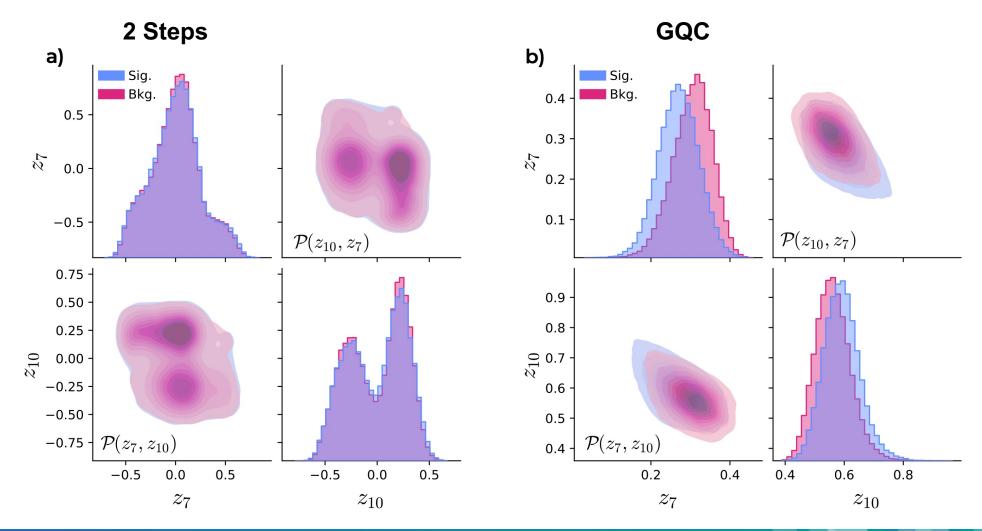
### **Guided Quantum Compression**



Two hybrid quantum-classical strategies: **GQC:** Joint training **2Steps**: The data compression step is independently trained



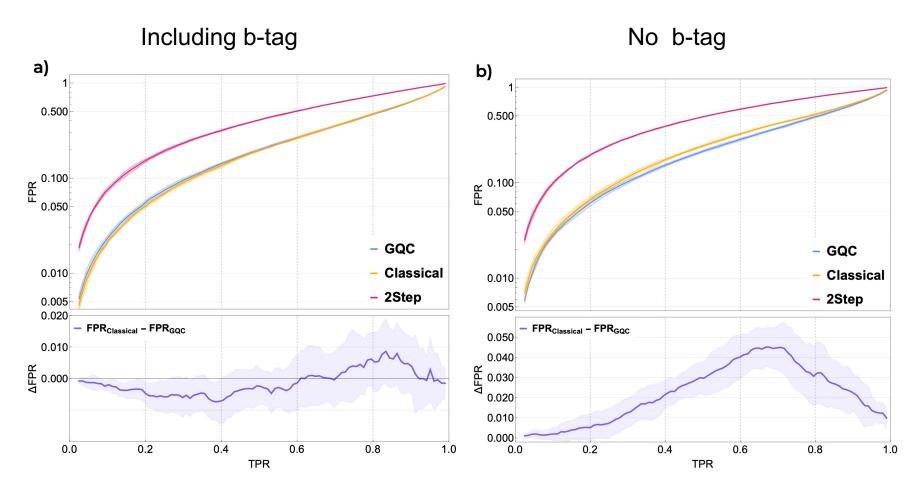
### **Latent Space Representation**

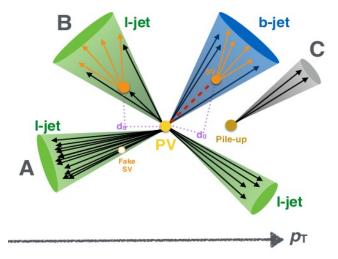




QUANTUM TECHNOLOGY INITIATIVE

**Results** 





b-tag features are high level features containing information about the quark content

compression method has significant impact on the classifier performance.

#### **CHALLENGE: DATA COMPRESSION**













### **Geometric Quantum Machine Learning**

- Given a data point  $x \in \mathcal{X}$  and its label  $y \in \mathcal{Y}$
- Estimate the prediction  $y_{\theta}$  from observable 0:  $y_{\theta}(x) = \langle \psi(x) | \mathcal{U}^{\dagger}(\theta) O \mathcal{U}(\theta) | \psi(x) \rangle$
- Given a symmetry group  $\mathfrak{G}$  on the data space  $\mathcal{X}$
- **(5** Invariance : For all  $x \in \mathcal{X}$  and  $g \in \mathfrak{G}$

$$y_{\theta}(g[x]) = y_{\theta}(x)$$

Final prediction y<sub>θ</sub> is invariant if:

#### Equivariant data embedding:

For feature map  $\psi \colon \mathcal{X} \to \mathcal{H}$ 

 $|\psi(g[x])\rangle = V_s[g]|\psi(x)0\rangle$ 

 $V_s[g]$  = **Representation** of g on  $\mathcal{H}$  induced by  $\psi$ 

#### **Equivariant ansatz:**

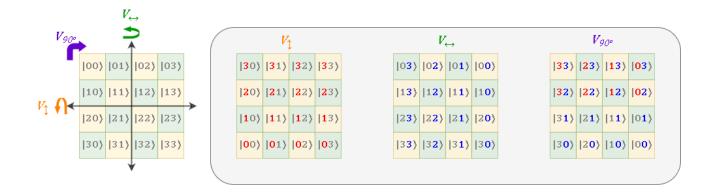
For operators generated by a fixed generator G as  $R_G(\theta) = \exp(-i\theta G)$ :

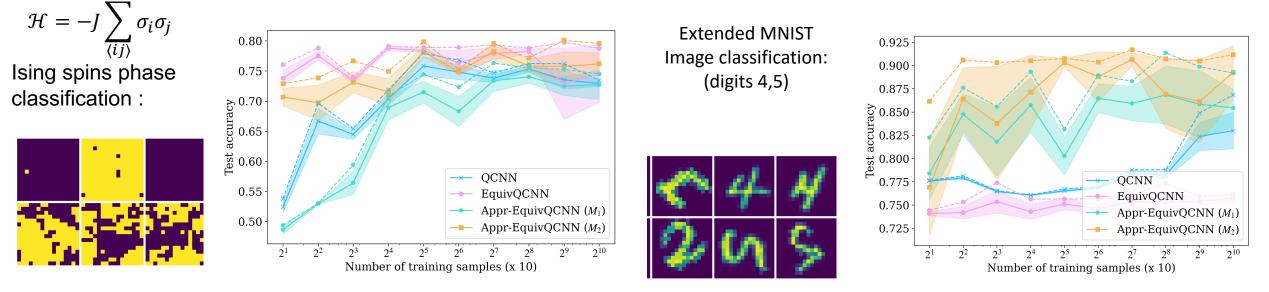
 $[R_G(\theta), V_S[g]] = 0 \quad \leftrightarrow [G, V_S[g]] = 0$ 

Invariant Measurement:  $V_s^{\dagger}[g]OV_s[g] = O$ 

# **Equivariant Quantum CNN**

- Construct equivariant quantum CNN under rotational & reflectional symmetry (p4m)
- Improved generalization power

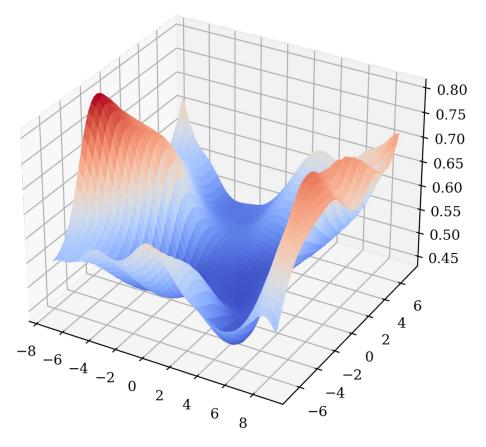


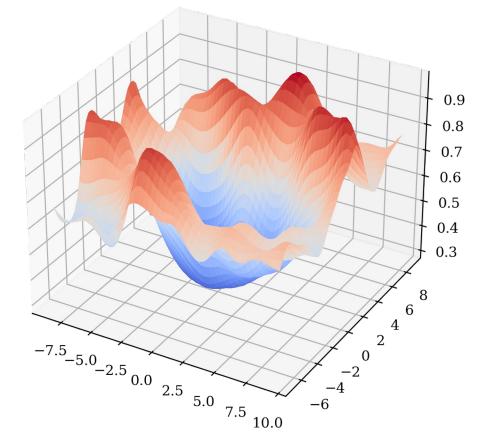




### **Non-convexity of loss landscape**

### Loss landscape plotted with orqviz





#### **Non-equivariant QCNN**

QUANTUM TECHNOLOGY INITIATIVE



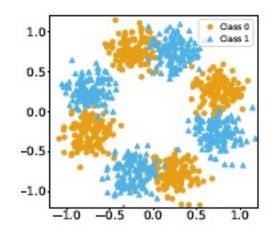
Tüysüz, Cenk, et al. "Symmetry breaking in geometric quantum machine learning in the presence of noise." *arXiv preprint arXiv:2401.10293* (2024).

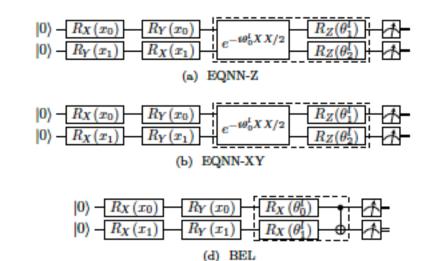
### Noise induced symmetry breaking

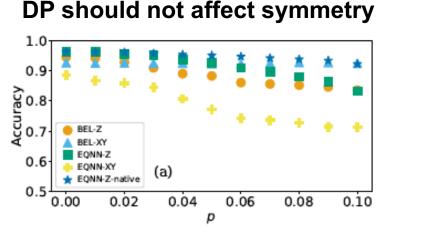
**Noise** effects on **EQNN** wrt discrete symmetry groups e.g.

 $\mathbf{Z}_2: R(\sigma) \cdot (x_i) = -x_i$ 

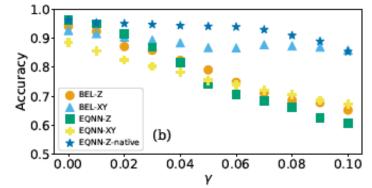
Bit Flip, Depolarizing (Pauli) and **Amplitude Damping channels** 



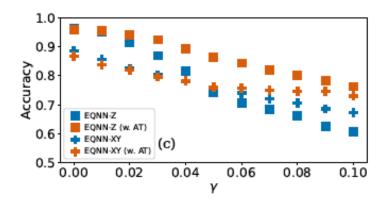




### EQNN performance drops with AD



Adaptive threshold classification



**EQNN-Z native:**  $Z_0Z_1$  commutes with the AD channel generator, but native gate set is limited on hardware!

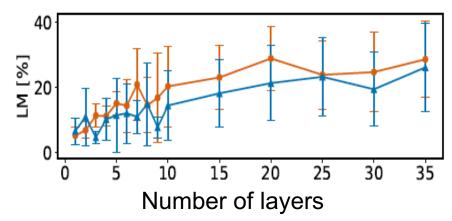


Symmetry breaking on hardware

 $LM = \frac{1}{M} \sum_{i=1}^{M} \frac{(\tau(\hat{y}_i) - \tau(\hat{y}_j))^2}{\tau(\hat{y}_i) + \tau(\hat{y}_j)}$ 

Label Misassignment uses adaptive thresholds





#### Tests on *ibm\_cairo*

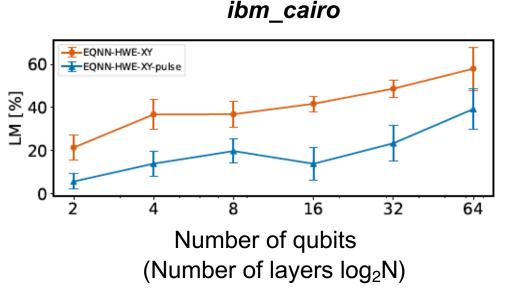
Confirms AD channel is dominant

### Symmetry breaking is linear in the number of layers

# Tests on *ibm\_cusco* using **hardware efficient ansatz** and **pulse efficient gate** implementation

create  $R_{ZX}(\theta)$  gates by controlling pulses in a continuous way

### LM reaches 50% (random) at around 50 qubits





Cea, M., et al. "Exploring the Phase Diagram of the quantum onedimensional ANNNI model." *arXiv preprint arXiv:2402.11022* (2024).

31

# A full pipeline: QML analysis of quantum data

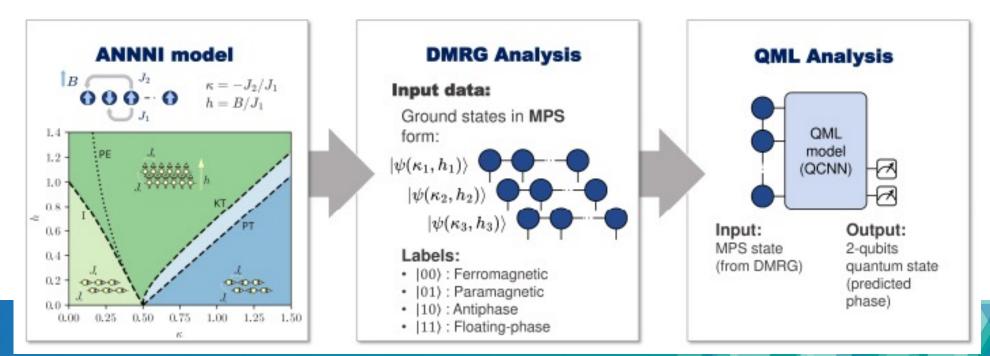
Connect QML and TN as different steps in the phase diagram reconstruction process for a ANNNI model.

Comparison between supervised and unsupervised QML

Use density matrix renormalization group (DMRG) for simulation of one dimensional multi-body systems (training data for the QML algorithms)

Faster state preparation then VQE

Thanks to the TN characterization of the wave function, we can run a systematic study on QML performance





# **Phase classification result**

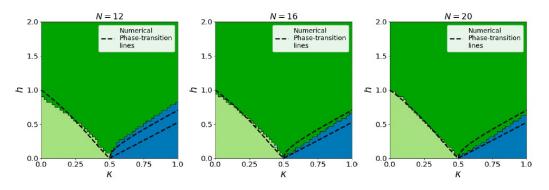


FIG. 11: Predictions of the QCNNs trained on the analytical points of the ANNNI Spin Model at different system sizes: N = 12 (left), N = 16 (middle), and N = 20 (right). Colors represent Ferromagnetic (light green), Paramagnetic (dark green), Antiphase (dark blue), and Floating Phase (light blue) as a function of the external magnetic field  $(h = B/J_1)$  and interaction strength ratio ( $\kappa = -J_2/J_1$ ) (refer to eq. [1]).

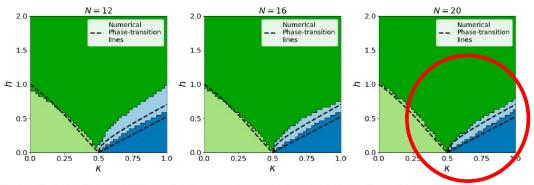


FIG. 12: Predictions of the QCNNs, trained on a subset of points from each phase of the ANNNI model at various system sizes: N = 12 (left), N = 16 (middle), and N = 20 (right). The color scheme indicates Ferromagnetic (light green), Paramagnetic (dark green), Antiphase (dark blue), and Floating Phase (light blue), as a function of the external magnetic field  $(h = B/J_1)$  and interaction strength ratio  $(\kappa = -J_2/J_1)$  (refer to eq. 1).

#### Supervised QML

**OUANTUM** 

TECHNOLOGY

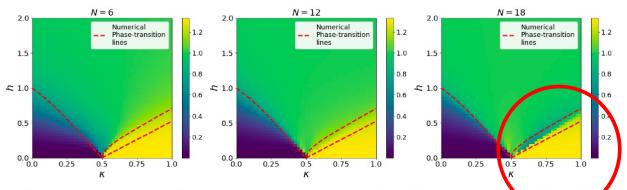


FIG. 13: Compression Scores C of the AD circuits trained on the  $(\kappa, h) = (0, 0)$  point of the ANNNI model mase diagram at different system sizes N: 6 (left), 12 (middle), and 18 (right). The scores are showcased as a function of the interaction strength ratio  $(\kappa = -J_2/J_1)$  and the external magnetic field  $(h = B/J_1)$ . Lower compression scores indicate better disentanglement of trash qubits from others, as defined by eq. [2].

Supervised QML does not generalize to the floating phase unless explicitly see at training time With max 20 spins the systems still experiences significant limitations due to its constrained size

#### Unsupervised QML

# **Open questions**

- Quantum computing offers great opportunties while HEP provides challenging problems
  - What are the most promising applications?
  - How do we define performance and validate results on **realistic use cases**?
- Experimental data has high dimensionality
  - Can we train Quantum Machine Learning algorithms effectively?
  - Can we reduce the impact of data reduction techniques?
- Experimental data is shaped by **physics laws** 
  - Can we leverage them to build better algorithms?

**CERN** is committed to creating impact on **QT** research in the coming years



# **CERN Quantum Technology Initiative**

Accelerating Quantum Technology Research and Applications

# Thanks!



https://quantum.cern/

# Lectures and Hands-On at CERN

- «A practical Introduction to quantum computing», Elias Combarro <u>https://indico.cern.ch/event/970903/</u>
- «Introduction to quantum computing », Heather Grey <u>https://indico.cern.ch/event/870515/</u>
- A set of two hands-on (introduction) sessions part of the 2023 openlab summer student lectures series

https://indico.cern.ch/event/1293871/

https://indico.cern.ch/event/1293874/

