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For an arbitrary state , the expectation value of a given Hamiltonian  
is bounded by the ground state energy  : 

      

|ψ⟩ H
λmin

⟨ψ |H |ψ⟩ ≥ λmin

Variational Method in Quantum Mechanics

Capability of quantum computer for calculating the expectation value of a Hamiltonian 
enables us to use the variational method to find the ground state

Charactering fundamental properties of a physical system often requires to know 
the ground state and its energy eigenvalue of the system 

Ground State of Physical System
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Let us consider a problem of approximating the energy eigenvalue for a certain 
system expressed by a matrix

For an eigenstate  and the eigenvalue  of a given operator : 

　  

|ψi⟩ λi A

A |ψi⟩ = λi |ψi⟩  is real if  is a Hermitian observable ( )λi = λ*i A A = A†

Considering the Hamiltonian  of a given physical system, the Hamiltonian can be 
expressed with eigenvalues  and eigenvectors  in a diagonal form: 

　➡︎ 

H
λi |ψi⟩

H =
N

∑
i=1

λi |ψi⟩⟨ψi | ⟨ψi |ψj⟩ = 0 ∀i ≠ j

Variational Method
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Variational Method
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For Hamiltonian , the expectation value of the Hamiltonian  

for an arbitrary state  is  

H =
N

∑
i=1

λi |ψi⟩⟨ψi |

|ψ⟩ ⟨ψ |H |ψ⟩ =: ⟨H⟩ψ



Variational Method
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⟨H⟩ψ = ⟨ψ |(
N

∑
i=1

λi |ψi⟩⟨ψi |) |ψ⟩

=
N

∑
i=1

λi⟨ψ |ψi⟩⟨ψi |ψ⟩

=
N

∑
i=1

λi |⟨ψi |ψ⟩ |2

For Hamiltonian , the expectation value of the Hamiltonian  

for an arbitrary state  is  

H =
N

∑
i=1

λi |ψi⟩⟨ψi |

|ψ⟩ ⟨ψ |H |ψ⟩ =: ⟨H⟩ψ



⟨H⟩ψ = ⟨ψ |(
N

∑
i=1

λi |ψi⟩⟨ψi |) |ψ⟩

=
N

∑
i=1

λi⟨ψ |ψi⟩⟨ψi |ψ⟩

=
N

∑
i=1

λi |⟨ψi |ψ⟩ |2

For Hamiltonian , the expectation value of the Hamiltonian  

for an arbitrary state  is  

H =
N

∑
i=1

λi |ψi⟩⟨ψi |

|ψ⟩ ⟨ψ |H |ψ⟩ =: ⟨H⟩ψ

⟨H⟩ψ =
N

∑
i=1

λi |⟨ψi |ψ⟩ |2 ≥ λmin

Since |⟨ψi |ψ⟩ |2 ≥ 0

Equality holds if |ψ⟩ = |ψmin⟩

Variational Method
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Equality holds if |ψ⟩ = |ψmin⟩

If one can take  to be as close as possible to ,  

 can be well approximated by  

|ψ⟩ |ψmin⟩
λmin ⟨H⟩ψ

Variational Method

⟨H⟩ψ =
N

∑
i=1

λi |⟨ψi |ψ⟩ |2 ≥ λmin

7



Equality holds if |ψ⟩ = |ψmin⟩

If one can take  to be as close as possible to ,  

 can be well approximated by  

|ψ⟩ |ψmin⟩
λmin ⟨H⟩ψ

But how can we do that?

Variational Method

⟨H⟩ψ =
N

∑
i=1

λi |⟨ψi |ψ⟩ |2 ≥ λmin

We cannot take  in an arbitrary manner because the overlap with 
 is exponentially small with increasing system size

|ψ⟩
|ψmin⟩
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How can we take  to be close to ?|ψ⟩ |ψmin⟩

θ → θ* λ(θ*) = ⟨ψ(θ*) |H |ψ(θ*)⟩ ∼ ⟨ψmin |H |ψmin⟩ = λmin

Strategy: 

‣ Consider a certain initial state   

‣ Generate a trial state  by applying a unitary  

(called Ansatz) to  

‣ Calculate  

‣ Find the smallest value of  by varying the parameter 

|ψ0⟩
|ψ(θ)⟩ = U(θ) |ψ0⟩ U(θ)

|ψ0⟩
λ(θ) := ⟨ψ(θ) |H |ψ(θ)⟩

λ(θ) θ

State Preparation in Variational Method
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θ → θ* λ(θ*) = ⟨ψ(θ*) |H |ψ(θ*)⟩ ∼ ⟨ψmin |H |ψmin⟩ = λmin

Variational Quantum Eigensolver (VQE）
Find optimized parameter  by repeating the calculation of  using 
quantum computer and parameter update using classical computer

θ* λ(θ)

Relatively robust against hardware noise in the present quantum computer

Quantum-Classical hybrid algorithm

State Preparation in Variational Method

Quantum Classical
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YesNo

θ*Update parameter θ  converged?λ(θ)

λ(θ) = ⟨ψ(θ) |H |ψ(θ)⟩|0⟩⊗n U(θ)

Classical

Quantum

Find optimized parameter  by repeating the calculation of  using 
quantum computer and parameter update using classical computer

θ* λ(θ)
Variational Quantum Eigensover
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Optimize parameter  so that  becomes the smallestθ λ(θ) := ⟨ψ(θ) |H |ψ(θ)⟩

θ → θ* λ(θ*) = ⟨ψ(θ*) |H |ψ(θ*)⟩ ∼ ⟨ψmin |H |ψmin⟩ = λmin

Gradient descent to find parameter  that minimizes θ* λ(θ)

Calculate the gradient  with respect to each  and update 

the parameter  so that  decreases

∂λ(θ)/∂θj θj

θj λ(θ)

θj → θ′￼j = θj − ϵ
∂λ(θ)
∂θj

Learning rateϵ( > 0) =

Parameter Optimization
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So-called “Parameter Shift Rule” used to obtain the gradient for certain type of unitaries

Pj ∈ {X, Y, Z}Consider a unitary  with U(θ) =
L

∏
j=1

Uj(θj) Uj(θj) = e−iθjPj/2

Parameter Optimization
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⟨M(θ)⟩ = Tr [MU(θ)ρU(θ)†]
∂

∂θj
⟨M(θ)⟩ =

1
2 [⟨M (θ +

π
2

ej)⟩ − M ⟨(θ −
π
2

ej)⟩]
 = unit vector with 1 in -th element, 0 otherwiseej j

Gradient of the expectation value can be obtained as a difference between 
two expectation values with θj ± π/2

Expectation value of observable M

Parameter Optimization
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So-called “Parameter Shift Rule” used to obtain the gradient for certain type of unitaries

Caveat:  
Need to calculate expectation values 
twice per parameter  

Pj ∈ {X, Y, Z}Consider a unitary  with U(θ) =
L

∏
j=1

Uj(θj) Uj(θj) = e−iθjPj/2



Variational Quantum Algorithm

VQE is a typical example of Variational Quantum Algorithm (VQA)

Variational Quantum Algorithm 
• Implement unitary operator  with parameterized quantum circuit (called 

variational quantum circuit or variational form) 

• Generate output state  by applying  to an initial state  

• Optimize parameter  so that the output state approximates the desired state

U(θ)

|ψ(θ)⟩ = U(θ) |ψ0⟩ U(θ) |ψ0⟩
θ
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Optimize  so that 

 

(θ, ϕ)
⟨P⟩|ψ0⟩ ≈ ⟨P⟩|ψ(θ,ϕ)⟩

∀P ∈ {X, Y, Z}

Exercise of VQA

Let us try to approximate randomly chosen quantum state using VQA 

‣ Generate a random single-qubit state  

‣ Approximate  with a trial state  

‣ Use  gate as a single-qubit variational form: 

|ψ0⟩
|ψ0⟩ |ψ(θ, ϕ)⟩ = U(θ, ϕ,0) |0⟩

U(θ, ϕ, λ = 0)

U(θ, ϕ, λ) =
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 eiλ+iϕ cos θ

2

Single-qubit state fully determined by the expectation 
values of Pauli ,  and  operatorsX Y Z
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Exercise of VQE

Consider a problem of minimizing the expectation value of an observable 
using parameter shift rule 

‣ Generate a trial state  with  

 

‣ Calculate the expectation value   with  

‣ Minimize it in a quantum-classical optimization loop

|ψ(θ)⟩ = U(θ) |0⟩

U(θ) = ∏
l

∏
j

RZ
j (θl

j2)R
Y
j (θl

j1)

⟨ψ(θ) |O |ψ(θ)⟩ O = ZXY
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We will try another VQE exercise in a later session



‣ Variations Quantum Algorithm :  
- Approximate randomly chosen quantum state  

‣ Variational Quantum Eigensolver : 
- Minimize expectation value of an observable 

Hands-on Exercise (I)
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Performing machine learning task by including quantum computing technology 
in the training and/or inference processes Quantum Machine Learning

Quantum Machine Learning

Classical = C  
Quantum = Q

CC

QC
Input data type Machine Learning Type

CQ

QQ
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In the hands-on exercise, we will try 
QML in both CQ and QQ settings



Conventional Quantum Neural Network (QNN) model for supervised machine 
learning task

Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

Quantum Machine Learning
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Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi

QML with Quantum Neural Networks

21

 called feature mapUin(x)



Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with 

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

22

QML with Quantum Neural Networks



Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with  

3. Measure observable  (e.g, Pauli  operator on the first qubit) under the state

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

O Z |ψout⟩
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QML with Quantum Neural Networks



Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with  

3. Measure observable  (e.g, Pauli  operator on the first qubit) under the state  

4. Calculate cost function  from the model output  and input label 

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

O Z |ψout⟩
L(θ) F(⟨O⟩xi,θ) yi
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QML with Quantum Neural Networks



Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with  

3. Measure observable  (e.g, Pauli  operator on the first qubit) under the state  

4. Calculate cost function  from the model output  and input label  
5. Update parameter  so that  becomes smaller

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

O Z |ψout⟩
L(θ) F(⟨O⟩xi,θ) yi

θ L(θ)
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QML with Quantum Neural Networks



Update parameter 𝞱 Calculate cost function L(𝞱)

Training data{(𝔁i, 𝒚i)}

U(𝞱)Uin(𝔁)|0⟩⊗n

⟨Z1⟩

1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with  

3. Measure observable  (e.g, Pauli  operator on the first qubit) under the state  

4. Calculate cost function  from the model output  and input label  
5. Update parameter  so that  becomes smaller 
6. Determine optimized parameter  that minimizes  by iterating the 2-5 steps

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

O Z |ψout⟩
L(θ) F(⟨O⟩xi,θ) yi

θ L(θ)
θ* L(θ)
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QML with Quantum Neural Networks



1. Prepare  using unitary  with input data  as parameter 

2. Generate output state  by processing  with  

3. Measure observable  (e.g, Pauli  operator on the first qubit) under the state  

4. Calculate cost function  from the model output  and input label  
5. Update parameter  so that  becomes smaller 
6. Determine optimized parameter  that minimizes  by iterating the 2-5 steps 

7. Predict the label  for unseen test data  using the trained model

|ψin(xi)⟩ = Uin(xi) |0⟩⊗n Uin(x) xi
|ψout(xi, θ)⟩ = U(θ) |ψin(xi)⟩ |ψin(xi)⟩ U(θ)

O Z |ψout⟩
L(θ) F(⟨O⟩xi,θ) yi

θ L(θ)
θ* L(θ)

ỹi(xtest
i , θ*) xtest

i

Test data{𝔁itest}

U(𝞱*)Uin(𝔁)|0⟩⊗n

⟨Z1⟩ → ỹi(xtest
i , θ*)

27

QML with Quantum Neural Networks



Variational form: ：U(θ) U({θl
j}) =

d

∏
l=1

n

∏
j=1

Urot(θl
j) ⋅ Uent ⋅

n

∏
j=1

Urot(θ0
j )

 : Single-qubit rotation gates with  as parametersUrot(θl
j) = RY

j (θl
j3)R

Z
j (θl

j2)R
Y
j (θl

j1) θ′￼s

‣　

‣　

 : Controlled-Z gate as an entangling gateUent =
n

∏
j=1

Cj
j%n+1[Z]

Apply  first, then use  times a pair of  and Urot d Uent Urot

Feature map: Uin(xi) = ∏
j

RZ
j (cos−1(x2))RY

j (sin−1(x))

Simple Example of QML

Let us consider an inverse problem to find a function  when only input data  
and the output  are given

f xi
yi = f(xi)
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Hands-on Exercise (II)
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‣Quantum Machine Learning : 
- Learn a function from input and output data from the function 



Learn more complex data from high-energy physics (HEP) experiment 
(though actually “truth-level” simulation data)

ATLAS detector

LHC

Machine learning technique is ubiquitous in HEP experiment 
   Detector reconstruction, simulation, data analysis, trigger, …

Application to High-Energy Physics
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Charged 
lepton

Neutrino

➡︎ Not observed by the detector, like SM neutrino

Use differences in kinematical properties due to the presence of H and 
 to classify signal from background χ̃±/χ̃0

Neutralino

Signal event with unknown particles

Classify events that contain new physics signal from background events

q

q

ℓ+

ν

ν

ℓ−

W+

W−

g

g

H

χ̃0

χ̃0

ℓ+

ν
ν

ℓ−

χ̃+

χ̃−

Background event without 
unknown particles

QML Application to Event Classification 
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3 variables

5 variables

7 variables

Use SUSY dataset in machine learning 
repository by University of California, Irvine

Signal (red histogram) and background 
(black histogram) differ in kinematical 
features of final state particles 

Use these features as input data and 
classify signal and background events

Training Data

32

http://archive.ics.uci.edu/ml/datasets/SUSY


‣ Feature map: Uin(xi) = Uϕ(xi)H⊗n

‣ Variational form:   

U({θl
j}) =

d

∏
l=1

n

∏
j=1

Urot(θl
j) ⋅ Uent ⋅

n

∏
j=1

Urot(θ0
j )

Urot(θl
j) = RZ

j (θl
j2)R

Y
j (θl

j1)

called ZZ feature map

, ϕ{k}(xi) = x{k}
i ϕ{k,k+1}(xi) = (π − x{k}

i )(π − x{k%n+1}
i )

Uϕ(xi) = exp (i
n

∑
k=1

ϕ{k,k+1}(xi)ZkZk%n+1 + i
n

∑
k=1

ϕ{k}(xi)Zk)

Quantum Neural Network Model
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Uent =
n

∏
j=1

Cj
j%n+1[Z]



Which class of       or       does the  
new data      belong to?

Assuming there are two classes 
of data:      and 

There is a new data 

Distance or Similarity between data can be used to judge

Kernel Method for Machine Learning

Likely  
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Consider a matrix with elements  constructed from two different 

training points  in the training sample 

Km,m′￼
= κ(xm, xm′￼)

xm, xm′￼ D

Function to quantify the distance measure κ : D × D → ℝ

Kernel Matrix
The closer the data points are, the larger the matrix elements

Representative kernel function is 

‣ Linear kernel :   

‣ Gaussian kernel :  
xT x′￼

e−γ∥x−x′￼∥2

Kernel Method for Machine Learning
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x
x′￼D ℱϕ(x′￼)

ϕ(x)

ϕ

κ(x, x′￼) ⟨ϕ(x) |ϕ(x′￼)⟩=

Input Space
Feature Space

Input data encoded in high-dimensional Hilbert space using feature map in QML 

       Inner products of encoded states can be used as a kernel function  
        for a feature map κ(xm, xm′￼) = ⟨ϕ(x) |ϕ(x′￼)⟩ ϕ : D → ℱ

Kernel Method for Machine Learning

36

For positive definite kernel, there 
is a feature space  created by  
such that the kernel  in  is 
equal to inner product in 

ℱ ϕ
κ D

ℱ

M. Schuld, F. Petruccione,  
Supervised Learning with Quantum Computers,  
Springer Nature



Input data encoded in high-dimensional Hilbert space using feature map in QML 

       Inner products of encoded states can be used as a kernel function  
        for a feature map κ(xm, xm′￼) = ⟨ϕ(x) |ϕ(x′￼)⟩ ϕ : D → ℱ

2.2 Models 39

Fig. 2.10 Data points of two classes arranged as concentric circles in the 2-d plane cannot be
separated by a linear decision boundary (left), but the feature map from Example 2.6 projects the
data onto a square cone in 3 dimensions allows them to be divided by a hyperplane

and can potentially go into very high-dimensional spaces of many different shapes,
and hope that our data gets easier to classify in that space. That way simple linear
models can get the power of nonlinear classifiers. Of course, designing a good model
translates into finding a good feature space, which in turnmeans to find a good kernel.
Excellent introductions to kernel methods are found in [18, 21]. A number of kernel
methods will be introduced in Sect. 2.4.

2.3 Training

The goal of training is to select the best model for prediction from a model family.
This means we have to define an objective function that quantifies the quality of a
model given a set of parameters, and training becomes an optimisation problem over
the objective. Machine learning tends to define rather difficult optimisation problems
that require a lot of computational resources. This is why optimisation “lies at the
heart ofmachine learning” [22] and often defines the limits ofwhat is possible. In fact,
some major breakthroughs in the history of machine learning came with a new way
of solving an optimisation problem. For example, the two influential turning points
in neural networks research were the introduction of the backpropagation algorithm
in the 1980s [23],4 as well as the use of Boltzmann machines to train deep neural
networks in 2006 [24]. However, as outlined in the preceding section, optimisation
is only a means to generalisation.

4The original paper [23], a Technical Report byRumelhart, Hinton andWilliams, has close to 20,000
citation on Google Scholar at the time of writing. It is widely known today that the algorithm had
been invented by others long before this upsurge of attention.

ϕ(x1, x2) = (x1, x2,
(x2

1 + x2
2)

2 )

Data classification can often improve 
when the input data are encoded 
into higher-dimensional feature 
space

Kernel Method for Machine Learning
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Example

How can we find a good feature map?

M. Schuld, F. Petruccione,  
Supervised Learning with Quantum Computers,  
Springer Nature



How can we find a good feature map?

Kernel Method for Machine Learning

Modifying kernel function would result in non-trivial changes in feature space

called Kernel Trick

Quantum Kernel

38

Input data encoded in high-dimensional Hilbert space using feature map in QML 

       Inner products of encoded states can be used as a kernel function  
        for a feature map κ(xm, xm′￼) = ⟨ϕ(x) |ϕ(x′￼)⟩ ϕ : D → ℱ

This is of course a problem and data dependent



Consider a 2-class classification problem: 

 {(xi, yi)}(i = 1,⋯, N) xi ∈ ℝd, yi ∈ {+1, − 1}

Define hyperplane as the points {x |x ∈ ℝd, w ⋅ x + b = 0}

x1

x2

w
Margin

Hyperplane

Separate the feature space linearly into two data 
regions with different labels by a hyperplane

ML Classification in Feature Space

39



x1

x2

w
Margin

Hyperplane

ML Classification in Feature Space

Machine Learning task:

‣ Training : Find a hyperplane  that satisfies   

‣ Inference : Sign of  gives a label prediction for unseen new data 
(w, b) yi(w ⋅ xi + b) ≥ 1 ∀i

w ⋅ x′￼i + b x′￼i

Support Vector Machine 
Find a hyperplane that maximizes the margin ( ) between 
hyperplane and the nearest data point

∝ 1/ ∥ w ∥

40

Consider a 2-class classification problem: 

 {(xi, yi)}(i = 1,⋯, N) xi ∈ ℝd, yi ∈ {+1, − 1}

Define hyperplane as the points {x |x ∈ ℝd, w ⋅ x + b = 0}

Separate the feature space linearly into two data 
regions with different labels by a hyperplane



Linear separation of data points in Hilbert space

Further translated to a problem of finding parameters  that minimize 

   

under the conditions ,  for parameters 

{αi}

L(α) =
N

∑
i=1

αi −
1
2

N

∑
i,j=1

yiyjαiαjK(xi, xj)

N

∑
i=1

αiyi = 0 αi ≥ 0 {αi}(i = 1,⋯, N)

Sign of  with optimized parameters 
N

∑
i=1

yiα*i K(xi, x′￼) + b* {α*i , b*}

Finding the minimum of ∥ w ∥2

Calculate Quantum Kernel  using quantum computerK(xi, xj)

Label prediction for test data x′￼

Quantum SVM
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More details in QML workbook

https://utokyo-icepp.github.io/qc-workbook/en/qkc_machine_learning.html


Quantum kernel can be obtained as inner product for a given feature map Uin(x)

K(xi, xj) := |⟨ϕ(xj) |ϕ(xi)⟩ |2 = |⟨0⊗n |U†
in(xj) |Uin(xi) |0⊗n⟩ |2Quantum Kernel

Probability of measuring 0 in all -qubits with the initial state  n |0⟩⊗n

Training data {(𝔁, 𝒚)}

|0⟩⊗n P(0n)

…

Uin(xi) U†
in(xj)

Quantum Circuit for QSVM 
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Hands-on Exercise (III)
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‣Quantum Machine Learning : 
- Event classification using quantum neural network model 
- Event classification using quantum kernel method


