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Ground State of Physical System

Charactering fundamental properties of a physical system often requires to know
the ground state and its energy eigenvalue of the system

For an arbitrary state |y), the expectation value of a given Hamiltonian H
is bounded by the ground state energy 4. .. - :

(WH|y) > A

m) Variational Method in Quantum Mechanics

Capability of qguantum computer for calculating the expectation value of a Hamiltonian
enables us to use the variational method to find the ground state



Variational Method

Let us consider a problem of approximating the energy eigenvalue for a certain
system expressed by a matrix

For an eigenstate |y;) and the eigenvalue A, of a given operator A:

A ‘ l//l> — /li ‘ Wl> A= /11.* is real if A is a Hermitian observable (A = A7)

Considering the Hamiltonian H of a given physical system, the Hamiltonian can be
expressed with eigenvalues 4. and eigenvectors | ;) in a diagonal form:

N
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Variational Method

N
For Hamiltonian H = Z Ay ) |, the expectation value of the Hamiltonian
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Variational Method

N
For Hamiltonian H = Z Ay )(y; |, the expectation value of the Hamiltonian
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for an arbitrary state \i//) is(w|H|y) =: (H),
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Variational Method
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Amin €@n be well approximated by (H),,



Variational Method

N
(H),, = ) 41w w) 1> = Ay Equality holds if |y) = [ygyin)
=1

If one can take | ) to be as close as possible to |y . ),
Amin €@n be well approximated by (H),,

But how can we do that?

We cannot take | ) in an arbitrary manner because the overlap with
|y . ) is exponentially small with increasing system size



State Preparation in Variational Method

How can we take | ) to be close to |y . )?

Strategy:
» Consider a certain initial state | y)

» Generate a trial state | y(0)) = U(0) | y,) by applying a unitary U(0)
(called Ansatz) to | y)

» Calculate A(0) := (w(0) | H|w(0))
» Find the smallest value of (@) by varying the parameter @

0 — 0 mp A0F) = (wOF) | H|w0%)) ~ (Wpin | H | Wiin) = Amin



State Preparation in Variational Method

0 — 0 mp A(0F) = (w(O0) |H|wO0")) ~ Wnin | H | Wimin) = Amin

B Variational Quantum Eigensolver (VQE)

Find optimized parameter @* by repeating the calculation of A(@) using
guantum computer and parameter update using classical computer

Quantum Classical

Quantum-Classical hybrid algorithm

Relatively robust against hardware noise in the present qguantum computer
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Variational Quantum Eigensover

Find optimized parameter 6* by repeating the calculation of A(@) using
guantum computer and parameter update using classical computer
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Parameter Optimization

Optimize parameter @ so that A(0) := (w(0) | H | w(0)) becomes the smallest
0 — 0 mp A0F) = (W) | H|wOF)) ~ (Woin | H| Winin) = Amin

- Gradient descent to find parameter @* that minimizes 4(0)

Calculate the gradient 8/1(0)/66}- with respect to each 6"1 and update

the parameter 6’] so that A(€@) decreases

| 0A(0)
Hj —> 6’] — (9] — € 30, e( > () = Learning rate
J
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Parameter Optimization

So-called “Parameter Shift Rule” used to obtain the gradient for certain type of unitaries

L
Consider a unitary U(0) = H Uj(é’l-) with l]j(@) — ¢~ Oh/2 P, e {X,Y,Z}
=1
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Parameter Optimization

So-called “Parameter Shift Rule” used to obtain the gradient for certain type of unitaries

L
Consider a unitary U(0) = H l]j(é}) with l]j(éf]-) — ¢~ Oh/2 P, e {X,Y,Z}
=1

Expectation value of observable M

(M(0)) = Tr [MU@)pU(0)"|

o ot fu(e50) (o 3)

e; = unit vector with 1in j-th element, 0 otherwise

Gradient of the expectation value can be obtained as a difference between

two expectation values with HJ + /2 Caveat:
Need to calculate expectation values

14 twice per parameter



Variational Quantum Algorithm

VQE is a typical example of Variational Quantum Algorithm (VQA)

Variational Quantum Algorithm

e Implement unitary operator U(@) with parameterized quantum circuit (called
variational guantum circuit or variational form)

o Generate output state | y(@)) = U(0) | y) by applying U(0) to an initial state | yy)
o Optimize parameter @ so that the output state approximates the desired state
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Exercise of VQA

Let us try to approximate randomly chosen quantum state using VQA

» Generate a random single-qubit state | y)
» Approximate |y,) with a trial state |y(6, ¢)) = U(O, ¢,0)|0)
» Use U(O, ¢, A = 0) gate as a single-qubit variational form:

0 il i O
COS E — € " S11 5
e'? sin > et cos >

0) —U(8,9,0) A

Single-qubit state fully determined by the expectation 4 l
values of Pauli X, Y and Z operators 4‘ Optimizer
» Optimize (6, @) so that T
<P>‘%> ~ <P>h/f(9,¢)> "Pe {X,Y,Z) Target expectation values
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Exercise of VQE

Consider a problem of minimizing the expectation value of an observable
using parameter shift rule

» Generate a trial state |yw(0)) = U(0)|0) with

UB) = H HRZ( RY(6))

» Calculate the expectation value (y(0)| O |y(0)) with O = ZXY
» Minimize it in a guantum-classical optimization loop

We will try another VQE exercise in a later session

17



Hands-on Exercise (l)

» Variations Quantum Algorithm :
- Approximate randomly chosen quantum state

» Variational Quantum Eigensolver :
- Minimize expectation value of an observable
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Quantum Machine Learning

Performing machine learning task by including quantum computing technology
in the training and/or inference processes

m) Quantum Machine Learning

cC ) cO | -

Quantum =Q

In the hands-on exercise, we will try
QML in both CQ and QQ settings

Input data type Machine Learning Type

19



Quantum Machine Learning

Conventional Quantum Neural Network (QNN) model for supervised machine
learning task

Training data{(x;, y)}

Update parameter 6 Calculate cost function L(6)

20



QML with Quantum Neural Networks

Update parameter 6 Calculate cost function L(0)

1. Prepare |y (x;)) = U, (x;)| 0)®" using unitary U. (x) with input data x; as parameter
U. (x) called feature map

21



QML with Quantum Neural Networks

Training data{(x;, yi)}

Update parameter 6 Calculate cost function L(0)

1. Prepare |y (x;)) = U, (x;)| 0)®" using unitary U, (x) with input data x; as parameter
2. Generate output state |y (x;,0)) = U(0) |y (x,)) by processing |y (x,)) with U(@)

22



QML with Quantum Neural Networks

Training data{(x;, yi)}

Update parameter 6 Calculate cost function L(0)

1. Prepare |y (x))) = U, (x;)| 0)®" using unitary U._(x) with input data x; as parameter
2. Generate output state |y (x;,0)) = U(@0) |y (x,)) by processing |y (x,)) with U(@)
3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state |y )
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QML with Quantum Neural Networks

Training data{(x;, yi)}

I_I "‘ llllllllllllllllllllll ..‘
Update parameter 6 &= [ Calculate cost function L(0) E
”' ----------------------- l”

1. Prepare |y (x;)) = U, (x;)| 0)®" using unitary U. (x) with input data x; as parameter
2. Generate output state |y, ,(x;,8)) = U(0) | v, (x;)) by processing |y, (x;)) with U(@)
3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state |y, )

4. Calculate cost function L(0) from the model output F(<0>xi,0) and input label y

24



QML with Quantum Neural Networks

Training data{(x;, y)}

................

f Update parameter 6 “.‘ Calculate cost function L(8)
1. Prepare |y (x,)) = U. (x)) | ())®” using unitary ln(x) with input data x; as parameter

2. Generate output state \wout(xi, 0)) = U@O) |y, (x;)) by processing |y, (x;)) with U(0)
3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state |y )

4. Calculate cost function L(@) from the model output F((O),, ) and input label y,
5. Update parameter @ so that L(f)) becomes smaller
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QML with Quantum Neural Networks

Training data{(x;, yi)}

Update parameter 6 Calculate cost function L(0)

1. Prepare |y (x;)) = U, (x;)| 0)®" using unitary U. (x) with input data x; as parameter
2. Generate output state |y, ,(x;,8)) = U(0) | v, (x;)) by processing |y, (x;)) with U(@)
3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state |y, ;)

4. Calculate cost function L(@) from the model output F((O),, ) and input label y,
5. Update parameter @ so that L(€) becomes smaller

6. Determine optimized parameter 6* that minimizes L(@) by iterating the 2-5 steps
26



QML with Quantum Neural Networks

" Test data {actesty .

1. Prepare |y (x;)) = U, (x;)| 0)®" using unitary U, (x) with input data x; as parameter
2. Generate output state |y, (x;,@)) = U(0) |y, (x,)) by processing |y .(x;)) with U(0)
3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state |y, )

4. Calculate cost function L(@) from the model output F((O),, ) and input label y,
5. Update parameter @ so that L(6) becomes smaller

6. Determine optimized parameter 6* that minimizes L(@) by iterating the 2-5 steps

7. Predict the label ¥,(x;*, 8*) for unseen test data x;°* using the trained model
27



Simple Example of QML

Let us consider an inverse problem to find a function f when only input data x;
and the output y; = f(x;) are given

> Feature map: Uy, (x) = | [ RA(cos™ (x?)R(sin~!(x))
J

d n n
> Variational form: U(0) : U({Q].l D = H H Urot(éf].l) U, | H Umt(@jo)
=1 |\ j=I j=1

Apply U

ot first, then use d times a pair of U, and U,

Umt(Hjl) = RjY (6’].13)R].Z(6’].12)Rjy (Hjll) : Single-qubit rotation gates with @'s as parameters
n
U, = H C;{%HH[Z] : Controlled-Z gate as an entangling gate
j=1
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Hands-on Exercise (ll)

» Quantum Machine Learning:
- Learn a function from input and output data from the function

29



Application to High-Energy Physics

Learn more complex data from high-energy physics (HEP) experiment

though actually “truth-level” simulation data

Machine learning technique Is ubiquitous in HEP experiment
Detector reconstruction, simulation, data analysis, trigger, ...
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QML Application to Event Classification

Classify events that contain new physics signal from background events

Signal event with Background event without
unknown particles
Charged
lepton
Neutrino

=» Not observed by the detector, like SM neutrino

Use differences in kinematical properties due to the presence of H and
717 to classify signal from background

31



Training Data
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.

Use SUSY dataset in machine learning 40000 - oo
repository by University of California, Irvine 0000 - jzzzz L
Signal (red histogram) and background O P

(black histogram) differ in kinematical
features of final state particles

¢ B
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

3 variables ::

Use these features as input data and
classify signal and background events

5 variables ::

6000 - 6000 -

4000 - L 4000 - ._."' S
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http://archive.ics.uci.edu/ml/datasets/SUSY

Quantum Neural Network Model

» Feature map: U, (x;) = U,(x,))H n
Ugy(x;) = exp (i Z P+ 1Y XL L + iz ¢{k}(xi)Zk)
k=1 k=1

D1y (X;) = xi{k}, Grrr1y(X) = (7 — Xi{k})(ﬂ — Xi{k%n+1})
m) called ZZ feature map

» Variational form:

U({HJZ}) — H H ot(‘gl) ) U H ot(‘go)

rot(‘gl) — RZ(H )RY(Q 1) U H J%on+ 1
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Kernel Method for Machine Learning

Assuming there are two classes There is a new data @

of data:@and @ m) Which class of @ or @ does the
new data @ belong to?

m) Distance or Similarity between data can be used to judge

34



Kernel Method for Machine Learning

Function to quantify the distance measurex : D X D — |

Consider a matrix with elements K, = k(x™, x™) constructed from two different

training points X", x™ in the training sample D

m) Kernel Matrix

The closer the data points are, the larger the matrix elements

Representative kernel function is

» Linear kernel : x!x’

. _ ., o)
» Gaussian kernel : e 77X

35



Kernel Method for Machine Learning

Input data encoded in high-dimensional Hilbert space using feature map in QML

) [nner products of encoded states can be used as a kernel function
K(x™, x™) = (p(x) | d(x")) forafeaturemap ¢ : D - F

¢ Feature Space
H) O
P (x)

For positive definite kernel, there
is a feature space F created by ¢

such that the kernel xin D is
equal to inner product in #

Input Space

M. Schuld, F. Petruccione,

<¢(X) | ¢(X /)> Supervised Learning with Quantum Computers,
Springer Nature

K(x,x) =

36



Kernel Method for Machine Learning

Input data encoded in high-dimensional Hilbert space using feature map in QML

B Inner products of encoded states can be used as a kernel function
K(x™, x™) = (p(x) | d(x")) forafeaturemap ¢ : D - F

Example

L2

Data classification can often improve
when the input data are encoded
into higher-dimensional feature
space

M. Schuld, F. Petruccione,
Supervised Learning with Quantum Computers,
Springer Nature

How can we find a good feature map?
37



Kernel Method for Machine Learning

Input data encoded in high-dimensional Hilbert space using feature map in QML
) Inner products of encoded states can be used as a kernel function
kK(x™ x™) = (p(x) | p(x")) forafeaturemap ¢ : D —» F

Quantum Kernel

How can we find a good feature map?

This is of course a problem and data dependent

Modifying kernel function would result in non-trivial changes in feature space
B called Kernel Trick

38



ML Classification in Feature Space

Consider a 2-class classification problem: Hyperplane ™. @
{(xiayi)}(i — 199N) xi e dayi c {+19 _ 1}

Define hyperplane as the points {x |x € R%w -x + b = 0)

. Separate the feature space linearly into two data
regions with different labels by a hyperplane

39



ML Classification in Feature Space

Consider a 2-class classification problem: Hyperplane ™. @
{(xpyl)}(l — 19"'9N) xi = L dayi c {+19 Bl 1}

Define hyperplane as the points {x |x € R%w -x + b = 0)

. Separate the feature space linearly into two data
regions with different labels by a hyperplane

Machine L earning task:
» Training : Find a hyperplane (w, b) that satisfies y,(w - x; + b) > 1 Vi

» Inference : Sign of w - x/ + b gives a label prediction for unseen new data x;

Support Vector Machine

Find a hyperplane that maximizes the margin (o 1/ || w [|) between

hyperplane and the nearest data point
40



Quantum SVM

Linear separation of data points in Hilbert space mp Finding the minimum of || w ||

. Further translated to a problem of finding parameters {«;} that minimize
N

1 N
i=1 i j=1

N
under the conditions Z a.y; =0, a; > 0 for parameters {a;}(i = 1,---, N)
i=1
More details in OML workbook

Calculate Quantum Kernel K(x,, xj) using quantum computer

N
Sign of Z yorK(x, x') + b* with optimized parameters {a*, b™ }
i=1

B Label prediction for test data x’
41


https://utokyo-icepp.github.io/qc-workbook/en/qkc_machine_learning.html

Quantum Circuit for QSVM

Quantum kernel can be obtained as inner product for a given feature map U, (x)
Training data {(x, y)}

A
A

P(0")

N N
N m " N
u m = N
u m " N
N m " N

— g ._/7§
u m " N
n

Quantum Kernel K(x;x) := | ((x) | ¢(x)) |* = [{0®" | U (x) | Up(x) | 0% |2
m) Probability of measuring 0 in all n-qubits with the initial state | 0)®"
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Hands-on Exercise (lll)

» Quantum Machine Learning :

- Event classification using quantum neural network model
- Event classification using quantum kernel method
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