KMI School 2024

Variational Quantum Algorithm and **Quantum Machine Learning**

Quantum Computing for Particle Physics and Astrophysics Nagoya University, March 6, 2024

> ICEPP, The University of Tokyo Koji Terashi

Ground State of Physical System

the ground state and its energy eigenvalue of the system

is bounded by the ground state energy λ_{\min} : $\langle \psi | H | \psi \rangle \ge \lambda_{\min}$

enables us to use the variational method to find the ground state

Charactering fundamental properties of a physical system often requires to know

For an arbitrary state $|\psi\rangle$, the expectation value of a given Hamiltonian H

- Variational Method in Quantum Mechanics
- Capability of quantum computer for calculating the expectation value of a Hamiltonian

system expressed by a matrix

For an eigenstate $|\psi_i\rangle$ and the eigenvalue λ_i of a given operator A: $A | \psi_i \rangle = \lambda_i | \psi_i \rangle$

Considering the Hamiltonian H of a given physical system, the Hamiltonian can be expressed with eigenvalues λ_i and eigenvectors $|\psi_i\rangle$ in a diagonal form:

$$\Rightarrow H = \sum_{i=1}^{N} \lambda_i |\psi_i\rangle \langle \psi_i| \qquad \langle \psi_i |\psi_j\rangle = 0 \quad \forall i \neq j$$

Let us consider a problem of approximating the energy eigenvalue for a certain

 $\lambda_i = \lambda_i^*$ is real if A is a Hermitian observable ($A = A^{\dagger}$)

N For Hamiltonian $H = \sum \lambda_i |\psi_i\rangle \langle \psi_i |$, the expectation value of the Hamiltonian for an arbitrary state $|\psi\rangle$ is $\langle\psi|H|\psi\rangle =: \langle H\rangle_{\psi}$

For Hamiltonian $H = \sum \lambda_i |\psi_i\rangle \langle \psi_i |$, the expectation value of the Hamiltonian for an arbitrary state $|\psi\rangle$ is $\langle\psi|H|\psi\rangle =: \langle H\rangle_{\psi}$

$$\begin{split} \langle H \rangle_{\psi} &= \langle \psi | \left(\sum_{i=1}^{N} \lambda_{i} | \psi_{i} \rangle \langle \psi_{i} | \right) | \\ &= \sum_{i=1}^{N} \lambda_{i} \langle \psi | \psi_{i} \rangle \langle \psi_{i} | \psi \rangle \\ &= \sum_{i=1}^{N} \lambda_{i} | \langle \psi_{i} | \psi \rangle |^{2} \end{split}$$

N

- $|\psi\rangle$

For Hamiltonian $H = \sum \lambda_i |\psi_i\rangle \langle \psi_i |$, the expectation value of the Hamiltonian for an arbitrary state $|\psi\rangle$ is $\langle\psi|H|\psi\rangle =: \langle H\rangle_{\psi}$

$$\begin{split} \langle H \rangle_{\psi} &= \langle \psi | \left(\sum_{i=1}^{N} \lambda_{i} | \psi_{i} \rangle \langle \psi_{i} | \right) | \\ &= \sum_{i=1}^{N} \lambda_{i} \langle \psi | \psi_{i} \rangle \langle \psi_{i} | \psi \rangle \\ &= \sum_{i=1}^{N} \lambda_{i} | \langle \psi_{i} | \psi \rangle |^{2} \end{split}$$

N

$|\psi\rangle$ Since $|\langle\psi_i|\psi\rangle|^2 \ge 0$ $\langle H \rangle_{\psi} = \sum \lambda_i |\langle \psi_i | \psi \rangle|^2 \ge \lambda_{min}$ i=1

Equality holds if $|\psi\rangle = |\psi_{\min}\rangle$

$$\langle H \rangle_{\psi} = \sum_{i=1}^{N} \lambda_i |\langle \psi_i | \psi \rangle|^2 \ge \lambda_n$$

If one can take $|\psi\rangle$ to be as close as possible to $|\psi_{\min}\rangle$, λ_{\min} can be well approximated by $\langle H \rangle_{\psi}$

nin

Equality holds if $|\psi\rangle = |\psi_{\min}\rangle$

$$\langle H \rangle_{\psi} = \sum_{i=1}^{N} \lambda_i |\langle \psi_i | \psi \rangle|^2 \ge \lambda_n$$

If one can take $|\psi\rangle$ to be as close as possible to $|\psi_{\min}\rangle$, λ_{\min} can be well approximated by $\langle H \rangle_{w}$

But how can we do that?

We cannot take $|\psi\rangle$ in an arbitrary manner because the overlap with $|\psi_{\rm min}\rangle$ is exponentially small with increasing system size

nin

Equality holds if $|\psi\rangle = |\psi_{\min}\rangle$

State Preparation in Variational Method

How can we take $|\psi\rangle$ to be close to

Strategy:

- Consider a certain initial state $|\psi_0\rangle$
- (called Ansatz) to $|\psi_0\rangle$
- Calculate $\lambda(\boldsymbol{\theta}) := \langle \psi(\boldsymbol{\theta}) | H | \psi(\boldsymbol{\theta}) \rangle$
- Find the smallest value of $\lambda(\boldsymbol{\theta})$ by varying the parameter $\boldsymbol{\theta}$

$$\langle |\psi_{\rm min}\rangle$$
?

• Generate a trial state $|\psi(\theta)\rangle = U(\theta) |\psi_0\rangle$ by applying a unitary $U(\theta)$

 $\theta \to \theta^* \implies \lambda(\theta^*) = \langle \psi(\theta^*) | H | \psi(\theta^*) \rangle \sim \langle \psi_{\min} | H | \psi_{\min} \rangle = \lambda_{\min}$

State Preparation in Variational Method

$\theta \to \theta^* \implies \lambda(\theta^*) = \langle \psi(\theta^*) | H | \psi(\theta^*) \rangle \sim \langle \psi_{\min} | H | \psi_{\min} \rangle = \lambda_{\min}$

Variational Quantum Eigensolver (VQE) Find optimized parameter θ^* by repeating the calculation of $\lambda(\theta)$ using quantum computer and parameter update using classical computer

Relatively robust against hardware noise in the present quantum computer

Variational Quantum Eigensover

Find optimized parameter θ^* by repeating the calculation of $\lambda(\theta)$ using quantum computer and parameter update using classical computer

Parameter Optimization

Optimize parameter θ so that $\lambda(\theta) := \langle \psi(\theta) | H | \psi(\theta) \rangle$ becomes the smallest

Gradient descent to find parameter θ^* that minimizes $\lambda(\theta)$

the parameter θ_i so that $\lambda(\theta)$ decreases

 $\theta_j \rightarrow \theta'_j = \theta_j - \epsilon \frac{\partial \lambda(\theta)}{\partial \theta_i}$ $\epsilon(>0) = \text{Learning rate}$

$\theta \to \theta^* \implies \lambda(\theta^*) = \langle \psi(\theta^*) | H | \psi(\theta^*) \rangle \sim \langle \psi_{\min} | H | \psi_{\min} \rangle = \lambda_{\min}$

Calculate the gradient $\partial \lambda(\theta) / \partial \theta_i$ with respect to each θ_i and update

Parameter Optimization

Consider a unitary $U(\theta) = \prod^{L} U_{j}(\theta_{j})$ with $U_{j}(\theta_{j}) = e^{-i\theta_{j}P_{j}/2}$ $P_{j} \in \{X, Y, Z\}$ j = 1

So-called "Parameter Shift Rule" used to obtain the gradient for certain type of unitaries

Parameter Optimization

Consider a unitary $U(\theta) = \prod U_j(\theta_j)$ with $U_j(\theta_j) = e^{-i\theta_j P_j/2}$ $P_j \in \{X, Y, Z\}$ j = 1

Expectation value of observable M

$$\langle M(\boldsymbol{\theta}) \rangle = \operatorname{Tr} \left[M U(\boldsymbol{\theta}) \rho U(\boldsymbol{\theta})^{\dagger} \right]$$
$$\implies \frac{\partial}{\partial \theta_j} \langle M(\boldsymbol{\theta}) \rangle = \frac{1}{2} \left[\left\langle M \left(\boldsymbol{\theta} + \frac{\pi}{2} \boldsymbol{e}_j \right) \right\rangle - M \left\langle \left(\boldsymbol{\theta} - \frac{\pi}{2} \boldsymbol{e}_j \right) \right\rangle \right]$$

 e_j = unit vector with 1 in *j*-th element, 0 otherwise Gradient of the expectation value can be obtained as a difference between two expectation values with $\theta_i \pm \pi/2$ Caveat: *Need to calculate expectation values twice per parameter* 14

So-called "Parameter Shift Rule" used to obtain the gradient for certain type of unitaries

Variational Quantum Algorithm

VQE is a typical example of Variational Quantum Algorithm (VQA)

Variational Quantum Algorithm

- variational quantum circuit or variational form)

• Implement unitary operator $U(\theta)$ with parameterized quantum circuit (called

• Generate output state $|\psi(\theta)\rangle = U(\theta) |\psi_0\rangle$ by applying $U(\theta)$ to an initial state $|\psi_0\rangle$

• Optimize parameter θ so that the output state approximates the desired state

Exercise of VQA

Let us try to approximate randomly chosen quantum state using VQA

- Generate a random single-qubit state $|\psi|$
- Approximate $|\psi_0\rangle$ with a trial state $|\psi(\theta)\rangle$
- Use $U(\theta, \phi, \lambda = 0)$ gate as a single-qubit variational form:

$$U(\theta, \phi, \lambda) = \begin{pmatrix} \cos \frac{\theta}{2} & -e^{i\lambda} \sin \theta \\ e^{i\phi} \sin \frac{\theta}{2} & e^{i\lambda + i\phi} \cos \theta \end{pmatrix}$$

Single-qubit state fully determined by the expectation values of Pauli X, Y and Z operators

Optimize (θ, ϕ) so that $\langle P \rangle_{|\psi_0\rangle} \approx \langle P \rangle_{|\psi(\theta,\phi)\rangle} \,^{\forall} P \in \{X, Y, Z\}$

$$\langle \psi_0 \rangle$$

 $\langle \theta, \phi \rangle \rangle = U(\theta, \phi, 0) | 0 \rangle$

using parameter shift rule

• Generate a trial state $|\psi(\theta)\rangle = U(\theta) |0\rangle$ with $U(\boldsymbol{\theta}) = \prod_{l} \left(\prod_{j} R_{j}^{Z}(\theta_{j2}^{l}) R_{j}^{Y}(\theta_{j1}^{l}) \right)$

- Calculate the expectation value $\langle \psi(\theta) | O | \psi(\theta) \rangle$ with O = ZXY
- Minimize it in a quantum-classical optimization loop

Consider a problem of minimizing the expectation value of an observable

We will try another VQE exercise in a later session

Hands-on Exercise (I)

- Variations Quantum Algorithm : - Approximate randomly chosen quantum state
- Variational Quantum Eigensolver :
 - Minimize expectation value of an observable

Quantum Machine Learning

in the training and/or inference processes

Performing machine learning task by including quantum computing technology **Quantum Machine Learning**

Classical = CQuantum $= \mathbf{Q}$

In the hands-on exercise, we will try QML in both CQ and QQ settings

19

Quantum Machine Learning

Conventional Quantum Neural Netw learning task

Conventional Quantum Neural Network (QNN) model for supervised machine

1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter $U_{\rm in}(\mathbf{x})$ called feature map

1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter

2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$

- 1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter
- 3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state $|\psi_{out}\rangle$

2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$

- 3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state $|\psi_{out}\rangle$

1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter 2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$ 4. Calculate cost function $L(\theta)$ from the model output $F(\langle O \rangle_{x_i,\theta})$ and input label y_i

- 1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter
- 3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state $|\psi_{out}\rangle$
- 5. Update parameter θ so that $L(\theta)$ becomes smaller

2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$ 4. Calculate cost function $L(\theta)$ from the model output $F(\langle O \rangle_{x_i,\theta})$ and input label y_i

- 1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter
- 3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state $|\psi_{out}\rangle$
- 5. Update parameter $\boldsymbol{\theta}$ so that $L(\boldsymbol{\theta})$ becomes smaller
- 6. Determine optimized parameter θ^* that minimizes $L(\theta)$ by iterating the 2-5 steps

2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$ 4. Calculate cost function $L(\theta)$ from the model output $F(\langle O \rangle_{x_i,\theta})$ and input label y_i

26

1. Prepare $|\psi_{in}(x_i)\rangle = U_{in}(x_i)|0\rangle^{\otimes n}$ using unitary $U_{in}(x)$ with input data x_i as parameter 3. Measure observable O (e.g, Pauli Z operator on the first qubit) under the state $|\psi_{out}\rangle$ 4. Calculate cost function $L(\theta)$ from the model output $F(\langle O \rangle_{x_i,\theta})$ and input label y_i 5. Update parameter $\boldsymbol{\theta}$ so that $L(\boldsymbol{\theta})$ becomes smaller 6. Determine optimized parameter θ^* that minimizes $L(\theta)$ by iterating the 2-5 steps 7. Predict the label $\tilde{y}_i(x_i^{\text{test}}, \theta^*)$ for unseen test data x_i^{test} using the trained model

2. Generate output state $|\psi_{out}(x_i, \theta)\rangle = U(\theta) |\psi_{in}(x_i)\rangle$ by processing $|\psi_{in}(x_i)\rangle$ with $U(\theta)$

Simple Example of QML

Let us consider an *inverse problem* to find a function f when only input data x_i and the output $y_i = f(x_i)$ are given

Feature map: $U_{in}(x_i) = \prod R_i^Z(\cos^{-1})$

• Variational form: $U(\theta) : U(\{\theta_i^l\}) =$

Apply $U_{\rm rot}$ first, then use d times a pair of $U_{\rm ent}$ and $U_{\rm rot}$

$$U_{\text{rot}}(\theta_j^l) = R_j^Y(\theta_{j3}^l)R_j^Z(\theta_{j2}^l)R_j^Y(\theta_{j1}^l):S$$
$$U_{\text{ent}} = \prod_{j=1}^n C_{j\% n+1}^j[Z]:\text{Controlled-}Z$$

$$\prod_{l=1}^{1} \left(\left(\prod_{j=1}^{n} U_{\text{rot}}(\theta_{j}^{l}) \right) \cdot U_{\text{ent}} \right) \cdot \prod_{j=1}^{n} U_{\text{rot}}(\theta_{j}^{0})$$

Single-qubit rotation gates with $\theta's$ as parameters

gate as an entangling gate

Hands-on Exercise (II)

Quantum Machine Learning :
 Learn a function from input and d

- Learn a function from input and output data from the function

Application to High-Energy Physics

Learn more complex data from high-energy physics (HEP) experiment (though actually "truth-level" simulation data)

Machine learning technique is ubiquitous in HEP experiment Detector reconstruction, simulation, data analysis, trigger, ...

QML Application to Event Classification

Classify events that contain new physics signal from background events

Use differences in kinematical properties due to the presence of H and $\tilde{\chi}^{\pm}/\tilde{\chi}^{0}$ to classify signal from background

Neutralino A Not observed by the detector, like SM neutrino

Use <u>SUSY dataset</u> in machine learning repository by University of California, Irvine

Signal (red histogram) and **background** (black histogram) differ in kinematical features of final state particles

Use these features as input data and classify signal and background events

Quantum Neural Network Model

► Feature map:
$$U_{in}(\mathbf{x}_i) = U_{\phi}(\mathbf{x}_i) H^{\otimes n}$$

 $U_{\phi}(\mathbf{x}_i) = \exp\left(i\sum_{k=1}^n \phi_{\{k,k+1\}}(\mathbf{x}_i) Z_k Z_{k\% n+1} + i\sum_{k=1}^n \phi_{\{k\}}(\mathbf{x}_i) Z_k\right)$
 $\phi_{\{k\}}(\mathbf{x}_i) = x_i^{\{k\}}, \phi_{\{k,k+1\}}(\mathbf{x}_i) = (\pi - x_i^{\{k\}})(\pi - x_i^{\{k\% n+1\}})$
 \Rightarrow called ZZ feature map

Variational form:

$$U(\{\theta_j^l\}) = \prod_{l=1}^d \left(\left(\prod_{j=1}^n U_{\text{rot}}(\theta_j^l)\right) \cdot U_{\text{ent}} \right) \cdot \prod_{j=1}^n U_{\text{rot}}(\theta_j^0)$$
$$U_{\text{rot}}(\theta_j^l) = R_j^Z(\theta_{j2}^l)R_j^Y(\theta_{j1}^l) \qquad U_{\text{ent}} = \prod_{j=1}^n C_{j\%n+1}^j[Z]$$

$$U_{\text{rot}}(\theta_j^l) = R_j^Z(\theta_{j2}^l)R_j^Y(\theta_{j1}^l)$$

Assuming there are two classes of data: and

There is a new data Which class of or or or does the new data belong to?

Likely

Distance or Similarity between data can be used to judge

Function to quantify the distance measure $\kappa : D \times D \to \mathbb{R}$

training points $x^m, x^{m'}$ in the training sample D

Kernel Matrix

- Representative kernel function is • Linear kernel : $x^T x'$
 - Gaussian kernel : $e^{-\gamma ||x-x'||^2}$

Consider a matrix with elements $K_{m,m'} = \kappa(x^m, x^{m'})$ constructed from two different

The closer the data points are, the larger the matrix elements

Input data encoded in high-dimensional Hilbert space using feature map in QML Inner products of encoded states can be used as a kernel function $\kappa(x^m, x^{m'}) = \langle \phi(x) | \phi(x') \rangle$ for a feature map $\phi : D \to \mathscr{F}$

For positive definite kernel, there is a feature space \mathscr{F} created by ϕ such that the kernel κ in D is equal to inner product in \mathscr{F}

 $x')\rangle$

M. Schuld, F. Petruccione, *Supervised Learning with Quantum Computers*, Springer Nature

Input data encoded in high-dimensional Hilbert space using feature map in QML Inner products of encoded states can be used as a kernel function $\kappa(x^m, x^{m'}) = \langle \phi(x) | \phi(x') \rangle$ for a feature map $\phi: D \to \mathscr{F}$

Inner products of encoded states can be used as a kernel function $\kappa(x^m, x^{m'}) = \langle \phi(x) | \phi(x') \rangle$ for a feature map $\phi: D \to \mathscr{F}$ **Quantum Kernel**

How can we find a good feature map? This is of course a problem and data dependent

Input data encoded in high-dimensional Hilbert space using feature map in QML

- Modifying kernel function would result in *non-trivial* changes in feature space

ML Classification in Feature Space

Consider a 2-class classification problem: $\{(x_i, y_i)\}(i = 1, \dots, N) \ x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

Define *hyperplane* as the points $\{x \mid x \in \mathbb{R}^d, w \cdot x + b = 0\}$

Separate the feature space linearly into two data regions with different labels by a hyperplane

ML Classification in Feature Space

Consider a 2-class classification problem: $\{(x_i, y_i)\}(i = 1, \dots, N) \ x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

Define *hyperplane* as the points $\{x \mid x \in \mathbb{R}^d, w \cdot x + b = 0\}$

Separate the feature space linearly into two data regions with different labels by a hyperplane

Machine Learning task:

- ► Training : Find a hyperplane (w, b) that satisfies $y_i(w \cdot x_i + b) \ge 1 \quad \forall i$ • Inference : Sign of $w \cdot x'_i + b$ gives a label prediction for unseen new data x'_i

Support Vector Machine

Find a hyperplane that maximizes the margin ($\propto 1/\parallel w \parallel$) between hyperplane and the nearest data point

- - 40

Quantum SVM

Linear separation of data points in Hilbert space \implies Finding the minimum of $|| w ||^2$

Calculate **Quantum Kernel** $K(x_i, x_j)$ using quantum computer Sign of $\sum y_i \alpha_i^* K(x_i, x') + b^*$ with optimized parameters $\{\alpha_i^*, b^*\}$ i=1Label prediction for test data x'

Further translated to a problem of finding parameters $\{\alpha_i\}$ that minimize

More details in <u>QML workbook</u>

41

Quantum Circuit for QSVM

Quantum kernel can be obtained as inner product for a given feature map $U_{in}(x)$ Training data $\{(x, y)\}$

Quantum Kernel $K(x_i, x_j) := |\langle \phi(x_j) | \phi(x_i) \rangle|^2 = |\langle 0^{\otimes n} | U_{in}^{\dagger}(x_j) | U_{in}(x_i) | 0^{\otimes n} \rangle|^2$

Probability of measuring 0 in all *n*-qubits with the initial state $|0\rangle^{\otimes n}$

Hands-on Exercise (III)

Quantum Machine Learning :

- Event classification using quantum neural network model
- Event classification using quantum kernel method

m neural network model m kernel method