Hands-on session 2: Representation of physical systems and dynamics simulation
 Yutaro liyama (ICEPP, The University of Tokyo)

Re(-re-...-)visiting how it started

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech-and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have me nuen thinme to cave and tn tall ahout and thara'e no imnlination that

... because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, ...

Dynamics in the Hamiltonian formalism

Schrödinger equation:
$i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle \quad$ (differential form)
$|\psi(t)\rangle=T\left[\exp \left(-\frac{i}{\hbar} H t\right)\right]|\psi(0)\rangle$ (integral form)
$=\lim _{\substack{\Delta t \rightarrow 0 \\ N \Delta t=t}} \prod_{k=0}^{N} e^{-\frac{i}{h} H(k \Delta t) \Delta t}|\psi(0)\rangle$
Form usable in numerical simulation

Calculation is conceptually easy

To compute $\prod_{k=0}^{N} e^{-\frac{i}{\hbar} H(k \Delta t) \Delta t}|\psi(0)\rangle$,

- At each k :
- Find the eigenvalues $\hbar \omega_{j}$ and eigenvectors $\left|\phi_{j}\right\rangle$ of $H(k \Delta t)$:

$$
H(k \Delta t)=\sum_{j=1}^{M} \hbar \omega_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

- Decompose $|\psi(k \Delta t)\rangle$ into eigenvectors $\left|\phi_{j}\right\rangle$:

$$
|\psi(k \Delta t)\rangle=\sum_{j=1}^{M} c_{j}\left|\phi_{j}\right\rangle
$$

- Update the complex phase of the coefficients and take the sum:

$$
|\psi((k+1) \Delta t)\rangle \simeq \sum_{j=1}^{M} e^{-i \omega_{j} \Delta t} c_{j}\left|\phi_{j}\right\rangle
$$

- Repeat

But practically impossible

- Hilbert space dimension is exponential with respect to the degrees of freedom n of the system:
$M=O(\exp (C n))(C>0)$
- Computer will run out of memory to store M eigenvectors
- Diagonalization of $M \times M$ Hamiltonian even more impractical
- Less significant but still formidable: How many time steps N do we need for a relevant simulation?

Using a quantum computer

- Hilbert space of an n-qubit register has 2^{n} dimensions
- $e^{-i H \Delta t}$ is a unitary operator, just as quantum gates are
\rightarrow Quantum computer is useful for certain classes of systems
If we have:
- A mapping of system state to register state
- A decomposition of the Hamiltonian into implementable gates then
$|0\rangle=$ State preparation $e^{-i H(0) \Delta t}-e^{-i H(\Delta t) \Delta t}=\cdots-e^{-i H(N \Delta t) \Delta t}=|f\rangle$
$|f\rangle$ represents the qubit-mapped final state of the system

Mapping physical systems to qubits

Examples

- Spin-1/2 systems
- Spin \leftrightarrow qubit
- $|\uparrow\rangle \leftrightarrow|0\rangle,|\downarrow\rangle \leftrightarrow|1\rangle$
- Pauli $\sigma^{X, Y, Z} \leftrightarrow X, Y, Z$ gates
- Fermion systems (second quantization)
- Orbital (site) \leftrightarrow qubit
- $|e\rangle \leftrightarrow|0\rangle,|o\rangle \leftrightarrow|1\rangle$
- Creation / annihilation $\leftrightarrow X \mp i Y$

Mapping physical systems to qubits

- Harmonic oscillators
- Oscillator $\leftrightarrow K$-qubit register (truncated at 2^{K} modes)
- $|n\rangle \leftrightarrow \otimes_{k=0}^{K-1}\left|n_{k}\right\rangle\left(n=\sum_{k=0}^{K-1} 2^{k} n_{k}\right)$
- Ladder operator \leftrightarrow Incrementer / decrementer circuit
- Fermion systems (first quantization)
- Particle \leftrightarrow register
- Single-particle eigenstates \leftrightarrow computational basis states

Mapping continuous and/or unbounded states requires ingenuity

Expressing the Hamiltonian with gates

Gates natively supported on a typical digital quantum computer:

- Single particle rotations (~arbitrary)
- One or two multi-qubit operations

There is no "gate for time evolution of system X"
\rightarrow Must find a decomposition $H=\sum_{l=1}^{L} H_{l}$ where each $e^{-i H_{l} \Delta t}$ is implementable with native gates

Two problems arise:

- $\prod e^{-i H_{l} \Delta t} \neq e^{-i \sum_{l} H_{l} \Delta t}$ ($H_{l} \mathrm{~s}$ don't commute in general)
- What if $L=O(\exp (C n))$?

Example:
Space of Hermitian ops of an n-spin system is spanned by $\{I, X, Y, Z\}^{\otimes n}$

Suzuki-Trotter decomposition

From Trotter formula

$$
\lim _{n \rightarrow \infty}\left(e^{i A t / n} e^{i B t / n}\right)^{n}=e^{i(A+B) t}
$$

product-of-exponentials is a valid first-order approximation:

$$
\exp \left(-\frac{i \Delta t}{\hbar} H\right)=\prod_{k=1}^{L} \exp \left(-\frac{i \Delta t}{\hbar} H_{k}\right)+O\left((\Delta t)^{2}\right)
$$

i.e. the approximation accuracy improves as $\Delta t \rightarrow 0$.

Most interesting Hamiltonians are local

Natural systems are governed by local interactions
Even in n-spin systems we usually consider 2- and 3-body interactions
\rightarrow In terms of Paulis, a typical Hamiltonian term looks like
$I \otimes \cdots \otimes I \otimes X \otimes Y \otimes I \otimes \cdots \otimes I$
System \leftrightarrow qubit mapping should consider Hamiltonian locality

Exercise 1: Driven spin 1/2

Let us simulate a single spin-1/2 system with a single qubit.
The spin is externally driven by an oscillating field:

$$
H(t)=\omega|\uparrow\rangle\langle\uparrow|+\frac{A}{2} \cos \alpha t(|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|)=H_{Z}+H_{X}(t)
$$

Using the previously discussed mapping,

$$
|\uparrow\rangle,|\downarrow\rangle \rightarrow|0\rangle,|1\rangle
$$

$$
\exp (-i \omega \Delta t|\uparrow\rangle\langle\uparrow|) \rightarrow
$$

$$
\exp \left(-\frac{i \omega \Delta t}{2}[(|0\rangle\langle 0|-|1\rangle\langle 1|)+(|0\rangle\langle 0|+|1\rangle\langle 1|)]\right)=e^{-i \omega \Delta t / 2(Z+I)}
$$

$$
=e^{-i \omega \Delta t / 2} R_{\mathrm{Z}}(\omega \Delta t)
$$

$$
\exp \left(-i \frac{A}{2} \cos (\alpha t) \Delta t[|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|]\right) \rightarrow
$$

$e^{-i A \cos (\alpha t) \Delta t / 2 X}=R_{X}(A \cos (\alpha t) \Delta t)$

Qiskit note: Sampler and Estimator

Sampler:

- User passes full circuits (including measurements)
- Returns occurrence frequencies of bit strings
- Optionally applies various error mitigation techniques

Estimator:

- User passes unmeasured circuits and observables (sums of Pauli products)
- Measures and returns expectation values of the observables
- Optionally applies various error mitigation techniques

Basis transformation

- Measurements are implemented only for $|0\rangle /|1\rangle(Z)$ basis
- Native multi-qubit gates have very specific forms
\rightarrow Basis transformation ($\pi / 2$ rotations in Bloch sphere) is an important technique
- Z basis $\leftrightarrow \mathrm{X}$ basis: $H Z H=X \Leftrightarrow Z=H X H$

Examples:

- Measurement of $\langle X\rangle$:

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
\end{aligned}
$$

- Controlled-Z

- Z basis $\leftrightarrow \mathrm{Y}$ basis: $S H Z H S^{\dagger}=Y \Leftrightarrow Z=S^{\dagger} H Y H S$

Examples:

- Measurement of $\langle Y\rangle$:

Exercise 2: Heisenberg model

Next we look at a multi-body system with a static Hamiltonian.

$$
H=-J \sum_{j=0}^{n-2}\left(\sigma_{j+1}^{X} \sigma_{j}^{X}+\sigma_{j+1}^{Y} \sigma_{j}^{Y}+\sigma_{j+1}^{Z} \sigma_{j}^{Z}\right)-h \sum_{j=0}^{n-1} \sigma_{j}^{Z}
$$

With the usual mapping

$$
\begin{aligned}
U_{X X}(\Delta t) & =\exp \left(i J \Delta t \sum_{j=0}^{n-2} \sigma_{j+1}^{X} \sigma_{j}^{X}\right)=\prod_{j=0}^{n-2} \exp \left(i J \Delta t \sigma_{j+1}^{X} \sigma_{j}^{X}\right) \rightarrow R_{X X}^{j, j+1}(-2 J \Delta t) \\
U_{Y Y}(\Delta t) & =\exp \left(i J \Delta t \sum_{j=0}^{n-2} \sigma_{j+1}^{Y} \sigma_{j}^{Y}\right)=\prod_{j=0}^{n-2} \exp \left(i J \Delta t \sigma_{j+1}^{Y} \sigma_{j}^{Y}\right) \rightarrow R_{Y Y}^{i, j+1}(-2 J \Delta t) \\
U_{Z Z}(\Delta t) & =\exp \left(i J \Delta t \sum_{j=0}^{n-2} \sigma_{j+1}^{Z} \sigma_{j}^{Z}\right)=\prod_{j=0}^{n-2} \exp \left(i J \Delta t \sigma_{j+1}^{Z} \sigma_{j}^{Z}\right) \rightarrow R_{Z Z}^{i j+1}(-2 J \Delta t) \\
U_{Z}(\Delta t) & =\exp \left(i h \Delta t \sum_{j=0}^{n-1} \sigma_{j}^{Z}\right)=\prod_{j=0}^{n-1} \exp \left(i h \Delta t \sigma_{j}^{Z}\right) \rightarrow R_{Z}^{j}(-2 h \Delta t)
\end{aligned}
$$

Implementation of $\mathrm{RXX}_{\mathrm{X} / \mathrm{Y} / Z z}$

Qiskit has built-in support of these gates.
But we implement them "by hand" using single-qubit gates + CX as an exercise.
Note that

$$
\begin{aligned}
Z_{j} Z_{j+1}|00\rangle & =|00\rangle \\
Z_{j} Z_{j+1}|01\rangle & =-|01\rangle \\
Z_{j} Z_{j+1}|10\rangle & =-|10\rangle \\
Z_{j} Z_{j+1}|11\rangle & =|11\rangle
\end{aligned}
$$

$$
\begin{aligned}
e^{i \phi \not \phi Z_{j}{ }_{j+1}}|00\rangle & =e^{i \phi}|00\rangle \\
e^{i \phi Z_{j} j_{j+1}}|01\rangle & =e^{-i \phi}|01\rangle \\
e^{i \phi Z_{j} Z_{j+1}}|10\rangle & =e^{-i \phi}|10\rangle \\
e^{i \phi Z_{j} Z_{j+1}}|11\rangle & =e^{i \phi}|11\rangle
\end{aligned}
$$

A gate sequence that performs this operation is

$$
\begin{gathered}
|00\rangle \rightarrow e^{i J \Delta t}|00\rangle \\
|01\rangle \rightarrow e^{-i J \Delta t}|01\rangle \\
|10\rangle \rightarrow e^{-i J \Delta t}|10\rangle \\
|11\rangle \rightarrow e^{i J \Delta t}|11\rangle
\end{gathered}
$$

Implementation of Rxxyy/zz

$R_{x x}$ and $R_{y y}$ are obtained from Rzz using basis transformations:

