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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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... because nature isn't classical, dammit, and if you want to make a 
simulation of nature, you'd better make it quantum mechanical, ...



Dynamics in the Hamiltonian formalism
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Schrödinger equation: 

   (differential form) 

   (integral form) 

            

iℏ
∂
∂t

|ψ(t)⟩ = H |ψ(t)⟩

|ψ(t)⟩ = T [exp (−
i
ℏ

Ht)] |ψ(0)⟩

= lim
Δt → 0
NΔt = t

N

∏
k=0

e− i
ℏ H(kΔt)Δt |ψ(0)⟩

Form usable in numerical simulation



Calculation is conceptually easy

To compute , 

• At each : 
• Find the eigenvalues  and eigenvectors  of : 

 

• Decompose  into eigenvectors : 
 

• Update the complex phase of the coefficients and take the sum:
 

• Repeat

∏N
k=0 e− i

ℏ H(kΔt)Δt |ψ(0)⟩
k

ℏωj |ϕj⟩ H(kΔt)
H(kΔt) = ∑M

j=1 ℏωj|ϕj⟩⟨ϕj|

|ψ(kΔt)⟩ |ϕj⟩
|ψ(kΔt)⟩ = ∑M

j=1 cj|ϕj⟩

|ψ((k + 1)Δt)⟩ ≃ ∑M
j=1 e−iωjΔtcj|ϕj⟩
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But practically impossible

• Hilbert space dimension is exponential with respect to the 
degrees of freedom  of the system: 

 ( ) 
• Computer will run out of memory to store  eigenvectors 
• Diagonalization of  Hamiltonian even more impractical 

• Less significant but still formidable: 
How many time steps  do we need for a relevant simulation?

n
M = O(exp(Cn)) C > 0

M
M × M

N
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Using a quantum computer

• Hilbert space of an -qubit register has  dimensions 

•  is a unitary operator, just as quantum gates are 
→ Quantum computer is useful for certain classes of systems 
If we have: 
• A mapping of system state to register state 
• A decomposition of the Hamiltonian into implementable gates 
then 

 represents the qubit-mapped final state of the system

n 2n

e−iHΔt

|f ⟩
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State preparation e−iH(0)Δt e−iH(Δt)Δt …|0⟩ e−iH(NΔt)Δt |f ⟩



Mapping physical systems to qubits

Examples 
• Spin-1/2 systems 

• Spin ↔︎ qubit 
•  ↔︎ ,  ↔︎  
• Pauli  ↔︎  gates 

• Fermion systems (second quantization) 
• Orbital (site) ↔︎ qubit 
•  ↔︎ ,  ↔︎  
• Creation / annihilation ↔︎ 

| ↑ ⟩ |0⟩ | ↓ ⟩ |1⟩
σX,Y,Z X, Y, Z

|e⟩ |0⟩ |o⟩ |1⟩
X ∓ iY
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Mapping physical systems to qubits

• Harmonic oscillators 
• Oscillator ↔︎ -qubit register (truncated at  modes) 

•  ↔︎   ( ) 

• Ladder operator ↔︎ Incrementer / decrementer circuit 

• Fermion systems (first quantization) 
• Particle ↔︎ register 
• Single-particle eigenstates ↔︎ computational basis states 

Mapping continuous and/or unbounded states requires ingenuity

K 2K

|n⟩ ⊗K−1
k=0 |nk⟩ n = ∑K−1

k=0 2knk
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Expressing the Hamiltonian with gates

Gates natively supported on a typical digital quantum computer: 
• Single particle rotations (~arbitrary) 
• One or two multi-qubit operations 
There is no “gate for time evolution of system X” 
→ Must find a decomposition  where each  is 
implementable with native gates 

Two problems arise: 
•   ( s don't commute in general) 
• What if ? 

Example: 
Space of Hermitian ops of an -spin system is spanned by 

H = ∑L
l=1 Hl e−iHlΔt

∏e−iHlΔt ≠ e−i∑l HlΔt Hl

L = O(exp(Cn))

n {I, X, Y, Z}⊗n
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Suzuki-Trotter decomposition

From Trotter formula 
 

product-of-exponentials is a valid first-order approximation: 

 

i.e. the approximation accuracy improves as .

lim
n→∞

(eiAt/neiBt/n)n = ei(A+B)t

exp (−
iΔt
ℏ

H) =
L

∏
k=1

exp (−
iΔt
ℏ

Hk) + O((Δt)2)

Δt → 0
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Most interesting Hamiltonians are local

Natural systems are governed by local interactions 
Even in -spin systems we usually consider 2- and 3-body interactions 
→ In terms of Paulis, a typical Hamiltonian term looks like 

 

System ↔︎ qubit mapping should consider Hamiltonian locality

n

I ⊗ ⋯ ⊗ I ⊗ X ⊗ Y ⊗ I ⊗ ⋯ ⊗ I
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Exercise 1: Driven spin 1/2

Let us simulate a single spin-1/2 system with a single qubit. 
The spin is externally driven by an oscillating field: 

 

Using the previously discussed mapping, 
 →  

 → 
 

 

 →  

H(t) = ω| ↑ ⟩⟨ ↑ | +
A
2

cos αt (| ↑ ⟩⟨ ↓ | + | ↓ ⟩⟨ ↑ |) = HZ + HX(t)

| ↑ ⟩, | ↓ ⟩ |0⟩, |1⟩
exp (−iωΔt| ↑ ⟩⟨ ↑ |)
exp (− iωΔt

2 [(|0⟩⟨0| − |1⟩⟨1|) + (|0⟩⟨0| + |1⟩⟨1|)]) = e−iωΔt/2(Z+I)

= e−iωΔt/2RZ(ωΔt)

exp (−i A
2 cos(αt)Δt [| ↑ ⟩⟨ ↓ | + | ↓ ⟩⟨ ↑ |])

e−iA cos(αt)Δt/2X = RX(A cos(αt)Δt)
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Qiskit note: Sampler and Estimator

Sampler: 
• User passes full circuits (including measurements) 
• Returns occurrence frequencies of bit strings 
• Optionally applies various error mitigation techniques 

Estimator: 
• User passes unmeasured circuits and observables (sums of Pauli 

products) 
• Measures and returns expectation values of the observables 
• Optionally applies various error mitigation techniques
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Basis transformation

• Measurements are implemented only for  (Z) basis 
• Native multi-qubit gates have very specific forms 
→ Basis transformation (π/2 rotations in Bloch sphere) is an 
important technique 
• Z basis ↔︎ X basis:  

Examples: 
• Measurement of :  
• Controlled-Z 

• Z basis ↔︎ Y basis:  
Examples: 
• Measurement of :

|0⟩/|1⟩

HZH = X ⇔ Z = HXH

⟨X⟩

SHZHS† = Y ⇔ Z = S†HYHS

⟨Y⟩
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H =
1

2 (1 1
1 −1)

S = (1 0
0 i)



Exercise 2: Heisenberg model

Next we look at a multi-body system with a static Hamiltonian. 

 

With the usual mapping 

H = − J
n−2

∑
j=0

(σX
j+1σ

X
j + σY

j+1σ
Y
j + σZ

j+1σ
Z
j ) − h

n−1

∑
j=0

σZ
j

UXX(Δt) = exp (iJΔt∑n−2
j=0 σX

j+1σX
j ) = ∏n−2

j=0 exp (iJΔtσX
j+1σX

j ) → Rj,j+1
XX (−2JΔt)

UYY(Δt) = exp (iJΔt∑n−2
j=0 σY

j+1σY
j ) = ∏n−2

j=0 exp (iJΔtσY
j+1σY

j ) → Rj,j+1
YY (−2JΔt)

UZZ(Δt) = exp (iJΔt∑n−2
j=0 σZ

j+1σZ
j ) = ∏n−2

j=0 exp (iJΔtσZ
j+1σZ

j ) → Rj,j+1
ZZ (−2JΔt)

UZ(Δt) = exp (ihΔt∑n−1
j=0 σZ

j ) = ∏n−1
j=0 exp (ihΔtσZ

j ) → Rj
Z(−2hΔt)
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Implementation of RXX/YY/ZZ

Qiskit has built-in support of these gates. 
But we implement them “by hand” using single-qubit gates + CX 
as an exercise. 
Note that 

A gate sequence that performs this operation is
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eiϕZjZj+1 |00⟩ = eiϕ |00⟩
eiϕZjZj+1 |01⟩ = e−iϕ |01⟩
eiϕZjZj+1 |10⟩ = e−iϕ |10⟩
eiϕZjZj+1 |11⟩ = eiϕ |11⟩

 

 

 

ZjZj+1 |00⟩ = |00⟩

ZjZj+1 |01⟩ = − |01⟩

ZjZj+1 |10⟩ = − |10⟩

ZjZj+1 |11⟩ = |11⟩

 
 
 

|00⟩ → eiJΔt |00⟩
|01⟩ → e−iJΔt |01⟩
|10⟩ → e−iJΔt |10⟩
|11⟩ → eiJΔt |11⟩



Implementation of RXX/YY/ZZ

RXX and RYY are obtained from RZZ using basis transformations:
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