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1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have

mi1r At thinoe tAa cav and ta tall alhaAant and thara’c nA 1imnlicratinn that

... because nature isn't classical, dammit, and if you want to make a
simulation of nature, you'd better make it quantum mechanical, ...



Dynamics in the Hamiltonian formalism

Schrédinger equation:

0
iha lw(t)) = H|w(t)) (differential form)

lw(®)) =T [exp (—th>] |lyw(0)) (integral form)

n
N
_ AltiI—I>lO o~ HKADAL [y (0))
NAt = t k=0

/

Form usable in numerical simulation



Calculation is conceptually easy

To compute H;{V:Oe‘%H(kA’)N |y(0)),

« Ateachk:
- Find the eigenvalues hw; and eigenvectors |¢;) of H(kA?).

H(kAn = 37| hoojl ) (]
» Decompose [y(kAr)) into eigenvectors [¢;):
pkAn) = 37 ¢ld;)

 Update the Complexﬂg)hase of the coefficients and take the sum:
w((k+ DAD) = 37 e™“Pci| ;)

J
* Repeat



But practically impossible

* Hilbert space dimension is exponential with respect to the
degrees of freedom n of the system:
M = O(exp(Cn)) (C > 0)

o Computer will run out of memory to store M eigenvectors
« Diagonalization of M X M Hamiltonian even more impractical

* Less significant but still formidable:
How many time steps /N do we need for a relevant simulation?



Using a quantum computer

« Hilbert space of an n-qubit register has 2" dimensions
. eHAlg g unitary operator, just as quantum gates are
— Quantum computer is useful for certain classes of systems

It we have:
* A mapping of system state to register state

* A decomposition of the Hamiltonian into implementable gates

then

—ooo—e

_ —iHO)At [ —iH(ADA:

|0) — State preparation e | o

—iH(NADAr [ I£)

|f) represents the qubit-mapped final state of the system



Mapping physical systems to qubits

Examples
e Spin-1/2 systems

e Spin « qubit
* [ 1)< 10), [ 1)< |1

e Pauli 6" & X, Y, Z gates

* Fermion systems (second guantization)
* QOrbital (site) « qubit
* |e) < [0), o) < [1)

e Creation / annihilation &« X F 1Y



Mapping physical systems to qubits

e Harmonic oscillators

« Oscillator « K-qubit register (truncated at 2% modes)
_ K-1
e n> < ®§:01 |nk> (n = Zk=0 zknk)

e |adder operator « Incrementer / decrementer circuit

* Fermion systems (first guantization)

e Particle < register

e Single-particle eigenstates < computational basis states

Mapping continuous and/or unbounded states requires ingenuity



EXpressing the Hamiltonian with gates

Gates natively supported on a typical digital guantum computer:
* Single particle rotations (~arbitrary)

* One or two multi-qubit operations

There is no “gate for time evolution of system X"

— Must find a decomposition H= Y, H, where each e~ s
implementable with native gates

Two problems arise:

o JJe At £ e~ 2/ HA (Hs don't commute in general)

 What if L = O(exp(Cn))?
Example:
Space of Hermitian ops of an n-spin system is spanned by {I, X, Y, Z}®"



Suzuki-Trotter decomposition

From Trotter formula

lim (eiAt/neiBt/n>” — ei(A+B)t

n—oo

poroduct-of-exponentials is a valid first-order approximation:

. L .
exp (—%H) = Hexp (—%H,J + O((AD?)

k=1
.e. the approximation accuracy improves as At — 0.
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Most Interesting Hamiltonians are local

Natural systems are governed by local interactions

Even in n-spin systems we usually consider 2- and 3-body interactions

— In terms of Paulis, a typical Hamiltonian term looks like
IQ - RQIRXRYRIRYQ - R

System < qubit mapping should consider Hamiltonian locality
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Exercise 1: Driven spin 1/2

Let us simulate a single spin-1/2 system with a single qubit.

The spin is externally driven by an oscillating field:
A
H(D = ol 1)1 1+ cosar (1 1)L T+11)(1]) = Hy+ Hy®)

Using the previously discussed mapping,

[T 14) = 10),11)
exp (—iwAt] 1 )( 1) =

exp (=222 [(J0)(0] = [1)¢1]) + (J0)0] + [1){1])] ) = e a2+

— e—ia)At/ZRZ(a)At)

exp <—i% cos(aAr || 1)( L [+]1)(1 |]) -

e—iA cos(an)At/2X _ RX(A COS(CU)AI)



Qiskit note: Sampler and Estimator

Sampler:

e User passes full circuits (including measurements)

* Returns occurrence frequencies of bit strings

e QOptionally applies various error mitigation techniques

Estimator:

e User passes unmeasured circuits and observables (sums of Paul
products)

 Measures and returns expectation values of the observables

e QOptionally applies various error mitigation techniques
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Basis transformation

 Measurements are implemented only for |0)/|1) (Z) basis
* Native multi-qubit gates have very specific forms

— Basis transformation (11/2 rotations in Bloch sphere) is an
important technigue

e 7 basis <> X basis: HZH = X & Z = HXH H= -
V2

Examples: |

« Measurement of (X): @_ ] > = (O

do

e Controlled-Z

qi Tm Tr

e 7 basis < Y basis: SHZHS =Y < Z = STHYHS

Examples:

« Measurement of (Y): 8-~

C
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Exercise 2: Heisenberg model

Next we look at a multi-body system with a static Hamiltonian.
n—2
_ X Z
H= —]Z(Gj o; +c7]+10 +0]+10 )—hZG

With the usual mapping

Uy (A7) = exp (umg - J{IGJX) = 1" Zexp <1]Ata+1a

- — R (=2JA1)

)
)

( S REFN(=2JA1)
U,(Af) = exp (umZ” 2 JZHGZ> — 1" Zexp <zJAta+10 ) S R (=2JA1)

Up(A) = exp (/A1 T ol ) = [T} exp (iJAta o

J=

UAAD = exp (ihAr Y, Z) [T exp (ihAt(;jZ>  R(=2hAD)



Implementation of Rxxyy/zz

Qiskit has built-in support of these gates.

But we implement them “by hand” using single-qubit gates + CX
as an exercise.

Note that
Z,Z;,1100) = |00) e'?%%+1| 00) = | 00)
ZZ.,|01) =—101) eP%%+1101) = 7| 01)
Z:Z.1110) = —[10) e 9441 10) = e 10)
ZZ. 111y =|11) e P44 | 11) = €' | 11)
A gate sequence that performs this operation is
do |00) — €721 00)
101) = e ¥A101)
a Jb R 10) = e~721| 10)

111) — e¥A111)
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Implementation of Rxx/yy/zz

Rxx and Ryy are obtained from Rzz using basis transformations:

do
a1
do
a1
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