

Hands-on session 5: Introduction to superconducting qubits and quantum computers Yutaro liyama (ICEPP, The University of Tokyo)

What constitutes a quantum computer

A compute-capable quantum system must incorporate:

- 1. A scalable physical system with well-characterized qubit*
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Conversely, any quantum system works as long as 1-5 is fulfilled

Q divincenzo's – Search Google
Google Suggestions
Q divincenzo's
Q divincenzo's criteria
Q divincenzo's pizza cinnaminson new jersey
Q divincenzo's bakery
Q divincenzo's pizza
Q divincenzo's cinnaminson
Q divincenzo's menu cinnaminson nj
Q divincenzo's pizza cinnaminson
Q divincenzo trade
Q divincenzo ethnicity

DiVincenzo's criteria

Circuits can be quantized

LC oscillator circuit

- Characteristic frequency ω determined by circuit elements (L and C)
- For typical circuits printed on a silicon chip: $\omega \sim 2\pi \times (a \text{ few GHz})$

Put that in a fridge: Quantum oscillator circuit

Hamiltonian: $H = \frac{1}{2C}q^2 + \frac{1}{2L}\phi^2$ where $q = \int_0^t i(\tau)d\tau$, $\phi = Li(t)$ Canonical quantization: $[\phi, q] = \phi q - q\phi = i\hbar$ \rightarrow With ladder operators $a^{(\dagger)} = \sqrt{\frac{C}{2\hbar L}}\phi \pm i\sqrt{\frac{L}{2\hbar C}}q$, Hamiltonian is $H = \hbar\omega(a^{\dagger}a + \frac{1}{2})$ Energy eigenstates $|n\rangle$ $(n = 0, 1, ...) \rightarrow$ $a^{\dagger} = \sum_n \sqrt{n+1} |n\rangle\langle n+1\rangle\langle n|$

Controlling the quantum LC oscillator

How do we induce level transitions in the oscillator?

One possibility: apply voltage capacitively

 $H = H_0 + \frac{C_d}{C_{\Sigma}} V(t) q$ $= H_0 + iA(t)(a - a^{\dagger})$ $= H_0 + iA(t) \sum_{n} \left(\frac{|n|}{(n+1)} - \frac{|n+1|}{(n+1)} \right)$ $= H_0 + iA(t) \sum_{n} \left(\frac{|n|}{(n+1)} - \frac{|n+1|}{(n+1)} \right)$ Generator of single-level transitions

A(t) must be a resonant AC signal

Simulation:
$$\hbar = 1, \omega = 1, A_0 = 0.1$$

Cd

The driven Hamiltonian

$$H(t) = H_0 + iA_0\sin(\omega_d t)\left(a - a^{\dagger}\right)$$

Consider a unitary transformation $U_0(t) = e^{iH_0t}$.

The Schrödinger equation of the transformed state $|\tilde{\psi}(t)\rangle := U_0(t)|\psi(t)\rangle$ is $i\frac{d}{dt}|\tilde{\psi}(t)\rangle = i\left(iH_0e^{iH_0t} + e^{iH_0t}\frac{d}{dt}\right)|\psi(t)\rangle$ $= -H_0 |\tilde{\psi}(t)\rangle + e^{iH_0 t} H |\psi(t)\rangle$ $= \left(e^{iH_0t}He^{-iH_0t} - H_0\right) \left|\tilde{\psi}(t)\right\rangle$ $=: \tilde{H}(t) | \tilde{\psi}(t) \rangle$ int NI VI

where

$$\begin{split} \tilde{H}(t) &= iA_0 \sin(\omega_d t) U_0(t) (a - a^{\dagger}) U_0^{\dagger}(t) \\ &= \frac{A_0}{2} \left(e^{i\omega_d t} - e^{-i\omega_d t} \right) \left(e^{-i\omega t} a - e^{i\omega t} a^{\dagger} \right) \end{split}$$

 \rightarrow Static term arises when $\omega_d = \omega$

With rotating wave approximation (RWA): $\tilde{H}(t) \sim \frac{A_0}{2} \left(a + a^{\dagger} \right)$

Need for anharmonicity

- We can control level transitions of the oscillator with resonant drives
- For harmonic oscillators, $\omega_d = \omega$ excites all levels
- → Can we somehow isolate a two-level system?

Anharmonic oscillator circuit

Josephson junction acts as a nonlinear inductor

LC circuit:
$$H = \frac{1}{2C}q^{2} + \frac{1}{2L}\phi^{2}$$

Cooper pair box (a.k.a. charge qubit):
$$H = 4E_{C}n^{2} - E_{J}\cos(\phi)$$
$$= 4E_{C}n^{2} + E_{J}\left(\frac{1}{2}\phi^{2} - \frac{1}{24}\phi^{4}\right) + \mathcal{O}(\phi^{6})$$
$$(n = q/2e \text{ (number of Cooper pairs)})$$

→ Each level gap has distinct frequency

1.0

0.8

 $|\langle \mathbf{0}|\psi(t)\rangle|^2$ $|\langle \mathbf{1}|\psi(t)\rangle|^2$

Transmon qubit

$$H = 4E_C n^2 - E_J \cos(\phi)$$

Transmon = CPB with $E_J/E_C \gg 1$

Expanding various quantities in terms of $\epsilon = \sqrt{E_C/E_J}$,

• Energy eigenstates: $|\psi_n\rangle = |n\rangle + \mathcal{O}(\epsilon)$

• Energy eigenvalues:
$$\frac{\Delta \omega_n}{\omega} := \frac{(E_{n+1} - E_n)}{\hbar \omega} = 1 - \frac{n}{4}\epsilon + \mathcal{O}(\epsilon^2)$$

• Creation / annihilation in terms of transmon eigenstates: $a = \sum_{n} \sqrt{n+1} |\psi_n\rangle \langle \psi_{n+1}| + \mathcal{O}(\epsilon)$

Driven Hamiltonian is still formally $H(t) = H_0 + iA_0 \sin(\omega_d t) (a - a^{\dagger})$

but with
$$H_0 = \sum_n E_n |\psi_n\rangle \langle \psi_n|$$
,
 $\tilde{H}(t) = iA_0 \sin(\omega_d t) U_0(t)(a - a^{\dagger}) U_0^{\dagger}(t)$
 $\sim \frac{A_0}{2} \left(e^{i\omega_d t} - e^{-i\omega_d t} \right) \sum_n \mu_n \left(e^{-i\Delta\omega_n t} |\psi_n\rangle \langle \psi_{n+1}| - e^{i\Delta\omega_n t} |\psi_{n+1}\rangle \langle \psi_n| \right)$
 $\frac{\text{R.W.A.}}{\omega_d = \Delta\omega_0} \frac{A_0}{2} \mu_0 \left(|\psi_0\rangle \langle \psi_1| + |\psi_1\rangle \langle \psi_0| \right) = \frac{A_0}{2} \mu_0 X$

Shifting the phase of the drive

$$\begin{split} \tilde{H}(t) &\sim \frac{A_0}{2} \left(e^{i(\omega_d t + \phi_d)} - e^{-i(\omega_d t + \phi_d)} \right) \sum_n \mu_n \left(e^{-i\Delta\omega_n t} |\psi_n\rangle \langle \psi_{n+1}| - e^{i\Delta\omega_n t} |\psi_{n+1}\rangle \langle \psi_n| \right) \\ & \frac{\text{R.W.A.}}{\omega_d = \Delta\omega_0} \frac{A_0}{2} \mu_0 \left(e^{i\phi_d} |\psi_0\rangle \langle \psi_1| + e^{-i\phi_d} |\psi_1\rangle \langle \psi_0| \right) = \frac{A_0}{2} \mu_0 \left(\cos \phi_d X - \sin \phi_d Y \right) \\ & \left(\begin{array}{c} 0 & e^{i\phi_d} \\ e^{-i\phi_d} & 0 \end{array} \right) \end{split}$$

→ Drive of $A_0 \sin(\Delta \omega_0 t + \phi_d)$ for duration τ effects

$$\begin{split} |\psi(t+\tau)\rangle &= \exp\left(-\frac{i}{2}A_0\mu_0\tau[\cos\phi_d X - \sin\phi_d Y]\right)|\psi(t)\rangle \\ &= R_z(-\phi_d)R_x(A_0\mu_0\tau)R_z(\phi_d)|\psi(t)\rangle \qquad R_\sigma(\theta) := e^{-i\frac{\theta}{2}\sigma} \end{split}$$

We learn two things:

- Amplitude and duration of the drive controls the polar angle
- Phase of the drive controls the azimuthal angle

 $R_{z}(\phi_{d})$

 $R_x(A_0\mu_0\tau)$

Single-qubit gates in practice

- In practice, finite-duration drive must be applied as *pulses* $U = \exp\left(-\frac{i}{2}A_0\mu_0\tau X\right) \to U = \exp\left(-\frac{i}{2}\left[\int_0^\tau A_0(t)\mu_0dt\right]X\right)$
- Previous derivation ignored a lot of small nonlinearities
- We don't have truly continuous control capabilities (control electronics are digital)
- → Parametric R_x gate is unrealistic
- Calibrate R_x at specific angles: Typically π (X) and $\pi/2$ (SX)

Single-qubit gates in practice

R_z can be parametric:

If we apply SX pulses with phases ϕ_1 , $\phi_1 + \phi_2$, $\phi_1 + \phi_2 + \phi_3$, ... $U = R_z(-\phi_1 - \phi_2 - \phi_3) SX R_z(\phi_1 + \phi_2 + \phi_3)$ $R_z(-\phi_1 - \phi_2) SX R_z(\phi_1 + \phi_2)$ $R_z(-\phi_1) SX R_z(\phi_1)$ $= R_z(-\phi_1 - \phi_2 - \phi_3) SX R_z(\phi_3) SX R_z(\phi_2) SX R_z(\phi_1)$ We carry the Z angle over to the final measurement, where it is unobservable: $P_{0,1} = |\langle 0, 1 | \psi \rangle|^2 = |\langle 0, 1 | R_z(\phi) | \psi \rangle|^2$ "Virtual Z gate" = phase shift *is* the R_z gate

SX and parametric R_z are all we need:

$$U(\theta,\phi,\lambda) = R_z\left(\phi - \frac{\pi}{2}\right)R_x\left(\frac{\pi}{2}\right)R_z\left(\pi - \theta\right)R_x\left(\frac{\pi}{2}\right)R_z\left(\lambda - \frac{\pi}{2}\right)$$

The drive frame

From the simulation exercise yesterday: $H(t) = \omega |\uparrow\rangle\langle\uparrow| + \frac{A}{2}\cos\alpha t \left(|\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow|\right)$

• In the "lab frame" $|\psi(t)\rangle = T \left[\exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(\tau) d\tau\right) \right] |\psi(0)\rangle$ the qubit winds about the Z axis rapidly

→ Drive physics is revealed by using a frame (unitary transformation) that rotates with the qubit

Coupling the qubits

Capacitative coupling results in an exchange interaction:

$$H = \sum_{j=1,2} H_0^{(j)} + C_g V_1 V_2$$

$$= \sum_{j=1,2} H_0^{(j)} - g_{12} \left(a^{(1)} - a^{\dagger(1)} \right) \left(a^{(2)} - a^{\dagger(2)} \right)$$

$$\to XX \text{ type, "transverse coupling"}$$

If we diagonalize H :

$$H = \sum_{m,n} E_{m,n} |\psi_m^{(1)}\rangle |\psi_n^{(2)}\rangle \langle\psi_m^{(1)}| \langle\psi_n^{(2)}|$$

we find that $E_{j,n} - E_{k,n} \neq E_{j,m} - E_{k,m}$ in general.
In the qubit space,

$$H = E_{00}|00\rangle\langle00| + E_{01}|01\rangle\langle01| + E_{10}|10\rangle\langle10| + E_{11}|11\rangle\langle11|$$

$$= \frac{E_{00} + E_{01} + E_{10} + E_{11}}{4}II + \frac{E_{00} - E_{01} + E_{10} - E_{11}}{4}IZ + \frac{E_{00} + E_{01} - E_{10} - E_{11}}{4}ZI + \frac{E_{00} - E_{01} - E_{10} + E_{11}}{4}ZZ$$

 \rightarrow "ZZ interaction" induced!

 V_2

Entangling gates

Statically coupled qubits have "always-on" entangling interactions

- \rightarrow To entangle the qubits in a more controlled manner,
- Keep the coupling small and use drive-induced entanglement
- ZZ term depends on the detuning (frequency diff.) of the qubits
 → Make the qubit frequencies tunable, bring the frequencies close only
 when necessary
- Create dynamical coupling
- etc.

All are highly complicated to implement

→ Entangling gates are the most noise-prone operations in NISQ

Dispersive measurement

Diagonalize qubit-qubit Hamiltonian

→ ZZ interaction

Diagonalize a qubit-resonator system

 \rightarrow Z b⁺b interaction, i.e., resonator frequency depends on qubit state (dispersive shift)

In other words: Qubit state can be measured through

resonator frequency measurement

Ramsey interferometry

Summary

- Cooper pair box is formed by replacing the inductor of an LC circuit with a Josephson junction
- Transmon (CPB with $E_J/E_C \gg 1$) has lowest two levels usable as a qubit
- Arbitrary single-qubit gate can be effected by resonantly driving the qubit
- Coupled qubits entangle
- Qubit state can be measured from a coupled resonator
- Qiskit pulse API allows detailed control of drive pulses on supported IBM Quantum backends