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What constitutes a quantum computer

A compute-capable quantum system must incorporate: 
1. A scalable physical system with well-characterized qubit* 
2. The ability to initialize the state of the qubits to a simple fiducial state 
3. Long relevant decoherence times 
4. A “universal” set of quantum gates 
5. A qubit-specific measurement capability 

Conversely, any quantum system works as long as 1-5 is fulfilled
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DiVincenzo’s criteria



Circuits can be quantized
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LC oscillator circuit 
• Characteristic frequency ω determined by circuit elements (L and C) 
• For typical circuits printed on a silicon chip: ω ~ 2π × (a few GHz)  

Put that in a fridge: Quantum oscillator circuit 

Hamiltonian:     where ,  

Canonical quantization:  

→ With ladder operators , 

     Hamiltonian is  

Energy eigenstates  →

H = 1
2C q2 + 1

2L ϕ2 q = ∫ t
0

i(τ)dτ ϕ = Li(t)

[ϕ, q] = ϕq − qϕ = iℏ

a(†) = C
2ℏL ϕ ± i L

2ℏC q

H = ℏω(a†a+ 1
2 )

|n⟩ (n = 0,1,…)

1
C i(t) + L d2

dt2 i(t) = 0

⇒ i(t) = i0 cos(ωt + ϕ), ω = 1

LC

microwavei

L C

+

v

-

a = ∑n n + 1|n⟩⟨n + 1|

a† = ∑n n + 1|n + 1⟩⟨n|



Controlling the quantum LC oscillator

How do we induce level transitions in the oscillator? 
One possibility: apply voltage capacitively 

A(t) must be a resonant AC signal
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i

L C

+

v

-

H = H0+
Cd

CΣ
V(t)q

= H0 + iA(t)(a − a†)

= H0 + iA(t)∑
n

(|n⟩⟨n + 1| − |n + 1⟩⟨n|)

Cd

V(t)
Circuit aggregate 
capacitance

Generator of single-level transitions

Simulation: 
ℏ = 1, ω = 1, A0 = 0.1A(t) = A0

A(t) = A0 sin(ωt)



The driven Hamiltonian

Consider a unitary transformation . 

The Schrödinger equation of the transformed state  is 

where 

→ Static term arises when  

With rotating wave approximation (RWA): 

U0(t) = eiH0t

|ψ̃(t)⟩ := U0(t)|ψ(t)⟩

ωd = ω
H̃(t) ∼

A0

2 (a + a†)
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H(t) = H0 + iA0 sin(ωdt)(a − a†)

i d
dt |ψ̃(t)⟩ = i (iH0eiH0t + eiH0t d

dt )|ψ(t)⟩

= − H0|ψ̃(t)⟩ + eiH0tH|ψ(t)⟩
= (eiH0tHe−iH0t − H0)|ψ̃(t)⟩

=: H̃(t)|ψ̃(t)⟩

H̃(t) = iA0 sin(ωdt)U0(t)(a − a†)U†
0 (t)

=
A0

2 (eiωdt − e−iωdt) (e−iωta − eiωta†)

eiωtN|n⟩⟨n + 1|e−iωtN = e−iωt|n⟩⟨n + 1|



Need for anharmonicity
• We can control level transitions of the oscillator 

with resonant drives 
• For harmonic oscillators,  excites all levels 

→ Can we somehow isolate a two-level system? 
Anharmonic oscillator circuit 
Josephson junction acts as a nonlinear inductor 

→ Each level gap has distinct frequency

ωd = ω
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Appl. Phys. Rev. 6, 021318 (2019)H = 1
2C q2 + 1

2L ϕ2LC circuit:

H = 4ECn2 − EJ cos(ϕ)

= 4ECn2 + EJ ( 1
2 ϕ2 − 1

24 ϕ4) + 𝒪(ϕ6)

Cooper pair box (a.k.a. charge qubit):

 (number of Cooper pairs)n = q/2e

Harmonic oscillator 
potential and levels

CPB potential and levels

https://doi.org/10.1063/1.5089550


Transmon qubit
Transmon = CPB with  

Expanding various quantities in terms of , 

• Energy eigenstates:  

• Energy eigenvalues:  

• Creation / annihilation in terms of transmon eigenstates: 
 

Driven Hamiltonian is still formally  

but with ,

EJ /EC ≫ 1

ϵ = EC /EJ

|ψn⟩ = |n⟩ + 𝒪(ϵ)
Δωn

ω :=
(En+1 − En)

ℏω = 1 − n
4 ϵ + 𝒪(ϵ2)

a = ∑n n + 1|ψn⟩⟨ψn+1| + 𝒪(ϵ)

H(t) = H0 + iA0 sin(ωdt)(a − a†)
H0 = ∑n En|ψn⟩⟨ψn|
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H = 4ECn2 − EJ cos(ϕ)

H̃(t) = iA0 sin(ωdt)U0(t)(a − a†)U†
0 (t)

∼
A0

2 (eiωdt − e−iωdt)∑n μn (e−iΔωnt|ψn⟩⟨ψn+1| − eiΔωnt|ψn+1⟩⟨ψn|)
R.W.A.

ωd=Δω0

A0

2 μ0 (|ψ0⟩⟨ψ1| + |ψ1⟩⟨ψ0|) = A0

2 μ0X

(0 1
1 0)



Shifting the phase of the drive

→ Drive of  for duration  effects 

 

We learn two things: 
• Amplitude and duration of the drive controls the polar angle 
• Phase of the drive controls the azimuthal angle

A0 sin(Δω0t + ϕd) τ

|ψ(t + τ)⟩ = exp (− i
2 A0μ0τ[cos ϕdX − sin ϕdY ])|ψ(t)⟩

= Rz(−ϕd)Rx(A0μ0τ)Rz(ϕd)|ψ(t)⟩
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H̃(t) ∼
A0

2 (ei(ωdt+ϕd) − e−i(ωdt+ϕd))∑n μn (e−iΔωnt|ψn⟩⟨ψn+1| − eiΔωnt|ψn+1⟩⟨ψn|)
R.W.A.

ωd=Δω0

A0

2 μ0 (eiϕd|ψ0⟩⟨ψ1| + e−iϕd|ψ1⟩⟨ψ0|) =
A0

2 μ0 (cos ϕdX − sin ϕdY)

( 0 eiϕd

e−iϕd 0 )

Rσ(θ) := e−i θ
2 σ

X

Y
Z

Rz(ϕd)

Rx(A0μ0τ)



• In practice, finite-duration drive must be applied as pulses 
 →  

• Previous derivation ignored a lot of small nonlinearities 
• We don’t have truly continuous control capabilities 

(control electronics are digital) 
→ Parametric Rx gate is unrealistic 
→ Calibrate Rx at specific angles: Typically π (X) and π/2 (SX)

U = exp (− i
2 A0μ0τX) U = exp (− i

2 [ ∫ τ
0

A0(t)μ0dt] X)

Single-qubit gates in practice
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Single-qubit gates in practice

Rz can be parametric: 

SX and parametric Rz are all we need: 

U(θ, ϕ, λ) = Rz (ϕ− π
2 ) Rx ( π

2 ) Rz (π − θ) Rx ( π
2 ) Rz (λ− π

2 )
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If we apply SX pulses with phases φ1, φ1+φ2, φ1+φ2+φ3, ... 

 

We carry the Z angle over to the final measurement, where it is unobservable: 

U = Rz(−ϕ1 − ϕ2 − ϕ3) SX Rz(ϕ1 + ϕ2 + ϕ3)
Rz(−ϕ1 − ϕ2) SX Rz(ϕ1 + ϕ2)
Rz(−ϕ1) SX Rz(ϕ1)

= Rz(−ϕ1 − ϕ2 − ϕ3) SX Rz(ϕ3) SX Rz(ϕ2) SX Rz(ϕ1)

P0,1 = |⟨0,1 |ψ⟩ |2 = |⟨0,1 |Rz(ϕ) |ψ⟩ |2

SX SXRz(φ1) Rz(φ2) Rz(φ3)

SX Rz(-φ1-φ2-φ3)

“Virtual Z gate” = phase shift is the Rz gate



The drive frame

From the simulation exercise yesterday: 

• In the “lab frame” 
 

the qubit winds about the Z axis rapidly 
• In the “drive frame” 

 

→ Drive physics is revealed by using a frame 
    (unitary transformation) that rotates with the qubit

|ψ(t)⟩ = T [exp (− i
ℏ ∫ t

0
H(τ)dτ)] |ψ(0)⟩

| ψ̃(t)⟩ = exp (− i
ℏ H̃t) | ψ̃(0)⟩
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H(t) = ω| ↑ ⟩⟨ ↑ | +
A
2

cos αt (| ↑ ⟩⟨ ↓ | + | ↓ ⟩⟨ ↑ |)

X

Y
Z



Coupling the qubits

Capacitative coupling results in an exchange interaction: 

 

→ XX type, “transverse coupling” 
If we diagonalize : 

 

we find that  in general. 

In the qubit space, 

 

→ “ZZ interaction” induced!

H = ∑j=1,2 H( j)
0 + CgV1V2

= ∑j=1,2 H( j)
0 − g12 (a(1) − a†(1)) (a(2) − a†(2))

H
H = ∑m,n Em,n|ψ (1)

m ⟩|ψ (2)
n ⟩⟨ψ (1)

m |⟨ψ (2)
n |

Ej,n − Ek,n ≠ Ej,m − Ek,m

H = E00|00⟩⟨00| + E01|01⟩⟨01| + E10|10⟩⟨10| + E11|11⟩⟨11|

=
E00 + E01 + E10 + E11

4 II +
E00 − E01 + E10 − E11

4 IZ +
E00 + E01 − E10 − E11

4 ZI +
E00 − E01 − E10 + E11

4 ZZ

12
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the transition between the lowest energy states is similar
to that of the flux qubit, see Fig. 2(h). Both long coher-
ence and high anharmonicity can be expected at the flux
sweet spot.

Lastly, we want to point out a further extension – the
0≠fi qubit – which has even stronger topological protec-
tion from noise83,84. However, the strongly suppressed
sensitivity to external fluctuations also makes it hard to
manipulate.

C. Interaction Hamiltonian engineering

To generate entanglement between individual quantum
systems – it is necessary to engineer an interaction Hamil-
tonian that connects degrees of freedom in those indi-
vidual systems. In this section, we discuss the physical
coupling mechanism and its representation in the qubit
eigenbasis. The use of coupling to form 2-qubit gates is
discussed in Sec. IV.

1. Physical coupling: capacitive and inductive

The Hamiltonian of two coupled systems takes a
generic form

H = H1 + H2 + Hint, (25)

where H1 and H2 denote the Hamiltonians of the individ-
ual quantum systems, which could be any combination of
the qubit circuits mentioned in Sec. II A and II B. The
last term, Hint, is the interaction Hamiltonian, which
couples variables of both systems. In superconducting
circuits, the physical form of the coupling energy is either
an electric or magnetic field (or a combination thereof).

To achieve capacitive coupling, a capacitor is placed
between the voltage nodes of the two participating cir-
cuits, yielding an interaction Hamiltonian Hint of the
form

Hint = CgV1V2, (26)

where Cg is the coupling capacitance and V1(V2) is the
voltage operator of the corresponding voltage node being
connected. Fig. 3(a) illustrates a realistic example of a
direct capacitive coupling between the top nodes of two
transmon qubits. Circuit quantization in the limit of
Cg π C1, C2 yields

H =
ÿ

i=1,2

#
4EC,in

2
i

≠ EJ,i cos(„i)
$

+4e2 Cg

C1C2
n1n2, (27)

Cg

C1 C2IC2IC1

Cg1

C1 C2IC2IC1

Cg2

CrLr

L1 IC2IC1 L2

M12

�e1 �e2

L1IC1 L2

M1C

�e1 �eC
IC2

�e2

M2C

(a) Direct capacitive coupling

(b) Capacitive coupling via coupler

(c) Direct inductive coupling

(d) Inductive coupling via coupler

V1 V2

I1 I2

ICC

gr1 gr2

g12

FIG. 3. Schematic of capacitive and inductive coupling
schemes between two superconducting qubits, labeled 1 and
2. (a) Direct capacitive coupling, where the voltage nodes
of two qubits V1 and V2 are connected by a capacitance Cg.
(b) Capacitive coupling via a coupler in form of a linear res-
onator. (c) Direct inductive coupling, where the two qubits
are coupled via mutual inductance, M12. (d) Inductive cou-
pling via mutual inductances M1C and M2C to a frequency-
tunable coupler.

where the expressions in brackets are the two Hamiltoni-
ans of the individual qubits, [see Eq. (16)], and we take
Vi = (2e/Ci)ni in Eq. (26). From Eq. (27), we see that
the coupling energy depends on the coupling capacitance
as well as the matrix elements of the voltage operators.
The dependencies are bilinear in the perturbative limit
(Cg π C1, C2).

To implement the coupling capacitance, one only need
bring the edges of the capacitor pads into close proxim-
ity, as has been demonstrated in state-of-the-art planar
designs85. The coupling capacitance is determined by
the planar capacitor geometry as well as the surround-
ing environment, such as the dielectric constant of the
substrate and the ground plane proximity.

≠ 0

1904.06560



Entangling gates

Statically coupled qubits have “always-on” entangling interactions 
→ To entangle the qubits in a more controlled manner, 
• Keep the coupling small and use drive-induced entanglement 
• ZZ term depends on the detuning (frequency diff.) of the qubits 
→ Make the qubit frequencies tunable, bring the frequencies close only 
when necessary 

• Create dynamical coupling 
• etc. 

All are highly complicated to implement 
→ Entangling gates are the most noise-prone operations in NISQ
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Dispersive measurement

Diagonalize qubit-qubit Hamiltonian 
→ ZZ interaction 
Diagonalize a qubit-resonator system 
→ Z b†b interaction, i.e., resonator 
frequency depends on qubit state 
(dispersive shift) 
In other words: 
Qubit state can be measured through 
resonator frequency measurement
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induces a state-dependent frequency shift of the resonator from which
the qubit state can be inferred by interrogating the resonator.

A dispersive readout allows us to map the quantum degree of
freedom of the qubit onto the classical response of the linear resonator,
thus transforming the readout optimization process into obtaining the
best signal-to-noise ratio (SNR) of the microwave signal used to probe
the resonator.

We then provide guidance on how to optimize system parame-
ters to perform high-fidelity, single-shot readout. After choosing
parameters, such as resonant frequencies and coupling rates, we
address the filter and amplifier circuitry positioned in-between the
qubit plane and the data acquisition hardware outside of the dilution
refrigerator. On this note, we review the basic principles of Purcell fil-
ters as well as parametric amplifiers, both of which are necessary to
obtain a fast, high-fidelity readout in scaled-up quantum processors.

A. Dispersive readout
A quantum measurement can be described as an entanglement

of the qubit degree of freedom with a “pointer variable” of a measure-
ment probe with a quantum Hamiltonian,306 followed by classical
measurement of the probe. In circuit QED, the qubit (the quantum
system) is entangled with an observable of a superconducting resona-
tor (the probe), see Fig. 19(a), allowing us to gain information about
the qubit state by interrogating the resonator—rather than directly
interacting with the qubit. Therefore, the optimization of the readout
performance is translated to maximizing the signal-to-noise ratio of a
microwave probe tone sent to the resonator, while minimizing the
unwanted “back-action” on the qubit.

The qubit-resonator interaction is described by the Jaynes–
Cummings Hamiltonian,307–309 previously introduced in Sec. II

HJC ¼ xr a†aþ 1
2

! "
þ

xq

2
rz þ g rþaþ r#a†

# $
; (143)

where xr and xq denote the resonator and qubit frequencies, respec-
tively, and g is the transverse qubit-resonator coupling rate. The opera-
tors rþ and r# represent the processes of exciting and de-exciting the
qubit, respectively.

In the limit when the detuning between the qubit and the resona-
tor is small compared with their coupling rate, i.e., D ¼ jxq # xr j
$ g, the energy levels of the two systems hybridize and a vacuum Rabi
splitting of frequency

ffiffiffi
n
p

g=p opens up, where n ¼ 1; 2; 3… denotes
the resonator mode. In this regime, excitations are coherently swapped
between the two systems. Although useful for certain two-qubit gate
operations, recall Sec. IVE, such transverse interactions change the
qubit state (since energy is directly exchanged between the resonator
and the qubit) and is therefore not desired in the context of “quantum
nondemolition” (QND) readout, in which the outcome of the quantum
measurement is not altered in the act of reading out the system.

In the dispersive limit, i.e., when the qubit is far detuned from the
resonator compared with their coupling rate g and the resonator line-
width j, D% g; j, there is no longer a direct exchange of energy
between the two systems. Instead, the qubit and resonator push each
others’ frequencies. To see this, the Hamiltonian can be approximated
using second-order perturbation theory208,310 in terms of g/D, taken in
the limit of few photons in the resonator. This is known as the
“dispersive approximation,” after which the Hamiltonian takes the
form

Hdisp ¼ ðxr þ vrzÞ a†aþ 1
2

! "
þ

~xq

2
rz; (144)

where v ¼ g2=D is the qubit-state dependent frequency shift, a so-
called “dispersive shift,” see Fig. 19(b), allowing us to distinguish the
two qubit states. This is an asymptotically longitudinal interaction,
yielding a QND measurement. Note that, in addition, the qubit fre-
quency also picks up a “Lamb shift,” ~xq ¼ xq þ g2=D, induced by
the vacuum fluctuations in the resonator. Also note that the dispersive

FIG. 19. (a) Simplified schematic of a representative experimental setup used for
dispersive qubit readout. The resonator probe tone is generated, shaped and timed
using an arbitrary waveform generator (AWG), and sent down into the cryostat. The
reflected signal S11 is amplified, first in a parametric amplifier and then in a low-
noise HEMT amplifier, before it is downconverted using heterodyne mixing and
finally sampled in a digitizer. (b) Reflected magnitude jS11j and phase h response
of the resonator with linewidth j, when the qubit is in its ground state j0i (blue) and
excited state j1i (red), separated with a frequency 2v=2p. (c) Corresponding com-
plex plane representation, where each point is composed of the in-plane Re½S11)
and quadrature Im½S11) components. The highest state discrimination is obtained
when probing the resonator just in-between the two resonances, [dashed line in
(b)], thus maximizing the distance between the states.
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Ramsey interferometry
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P(1) = 1
2 [cos (n ( π

2 + δωτ)) + δωτ]



Summary

• Cooper pair box is formed by replacing the inductor of an LC 
circuit with a Josephson junction 

• Transmon (CPB with ) has lowest two levels usable 
as a qubit 

• Arbitrary single-qubit gate can be effected by resonantly 
driving the qubit 

• Coupled qubits entangle 
• Qubit state can be measured from a coupled resonator 
• Qiskit pulse API allows detailed control of drive pulses on 

supported IBM Quantum backends

EJ /EC ≫ 1
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