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What constitutes a guantum computer

A compute-capable guantum system must incorporate:

Long relevant decoherence times
A “universal” set of quantum gates
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A qubit-specific measurement capability

A scalable physical system with well-characterized qubit®
The ability to initialize the state of the qubits to a simple fiducial state

DiVincenzo’s criteria

Conversely, any quantum system works as long as 1-5 is fulfilled
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Circuits can be quantized

LC oscillator circuit
e Characteristic frequency w determined by circuit elements (L and C)

e For typical circuits printed on a silicon chip: w ~ 21 x (a few GHz)
j | o microwave
?l(t) + Lﬁl(t) =0

L % _—C . . 1
= I(f) = 1COoS(wt + @P), W =—
(1) = iy cos( ¢) N7

Put that in a fridge: Quantum oscillator circuit
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Hamiltonian: H = 5=q° + 5-¢° where g = Io i(7)dr, ¢ = Li(t)

Canonical quantization: [¢, qg] = ¢g — qip = ih

- M=/ p+q. /L
— With ladder operators a‘'’ = 2thb_l TYalA

Hamiltonian is H = hw(a7a+%)
a = n+ 1ln)(n+1

n

a’ = 2 Vn+1n+1)(n

Energy eigenstates |n) (n = 0,1,...) =




Controlling the quantum LC oscillator

How do we induce level transitions in the oscillator?

Cq
One possibility: apply voltage capacitively ~ |
c, V(t) >
H = HO-|——V(1‘)q Circuit aggregate
Cs -_______— capacitance . y _
= Hy + iA(f)(a — a")
T

= Hy+iA®) ) (In)(n+ 1] = |n+ 1)(n])

n

A(t) must be a resonant AC signal
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Simulation:

\-— Generator of single-level transitions



The driven Hamiltonian

H(t) = Hy + iAy sin(wyt) (a — a”)

Consider a unitary transformation Uy(f) = e'™"

The Schrédinger eqtilation of the tran.sform.ed state |p(r)) := Uy(®)|w(?)) is
L) = i (iHOelHof + elHof%) Iy (6))
= — Hy|r (1)) + "™ Hly (1))
= (" He ™" — Hy) [5(1))
=: H()|@(0))

e“Nnyn + 1|e™ N = e n)(n + 1|
where /— A A

A(1) = iAysin(w ) Uy(0)a — aHU (1)

A, . . iy .
- (ela)dt_ ¢ la)dt> (6 ity _ eza)taT)

— Static term arises when o, = w

With rotating wave approximation (RWA): A(t) ~ % (a+a")



Need for anharmonicity : e

[(1]w(t))|?
— |(2]w(t))]?
— 1(3lp(t)]?
— |(4]p(t))]?

* We can control level transitions of the oscillator
with resonant drives m

e For harmonic oscillators, w; = w excites all levels

— Can we somehow isolate a two-level system?

Anharmonic oscillator circuit - i
uperconductor Superconductor
S S,
Josephson junction acts as a nonlinear inductor | -
\4 K
, , 1 1 Appl. Phys. Rev. 6, 021318 (2019)
L C circuit: H = qu + quz
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Cooper pair box (a.k.a. charge qubit): Harmonic oscillator
potential and levels

SN

H = 4E n* — E; cos(¢)

= 4En® + E; (307 = 52¢*) + 04°)

n = g/2e (number of Cooper pairs)

w
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N
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Energy [Ahwo1]

CPB potential and levels —4

— Each level gap has distinct frequency 0 | , |
- Sup:g/?conduc(:)ting ph,:a/iedJ "



https://doi.org/10.1063/1.5089550

Transmon qubit H = 4Eqn’ — E, cos(d)

Transmon = CPB with E;/E- > 1

Expanding various quantities in terms of € = y/E¢/E},

» Energy eigenstates: |y,,) = |n) + O(¢)

A60n (En+1 _ En)

- . : _1_n 2
. Energy eigenvalues: — := — =1 4€+@(€)

e (Creation / annihilation in terms of transmon eigenstates:

Driven Hamiltonian is still formally H(r) = Hy + iA sin(w,f)(a — a”)

but with Hy = 3’ E, |, )}{w,|.

H(r) = iAsin(w,)Uy(t)(a — a" U/ (1)

A . » . ;
~ 70 (elwdt —e lwdt) Zn Hn (e lAw”th//n)(l//nHl — elAw”th//nH)(l/jnl)

RWA. A A
> o (lwod(wal + w)wol) = =X

a)d=Aa)O




Shifting the phase of the drive

~ A ~ 3 — ]
H(l.) ~ 70 (el(a)dl+¢d) —e l(a)dl+§bd)) Zn lun (e lAwnthn)(Wn-i—ll — elAwntll//n+1><l//n|>

R.W.A. A Ay

—~ o (€ Ply) (| + e Paly )yl ) = =4 (cos ¢y X — sin ¢, Y)

w;=Aw,

— Drive of Ay sin(Awyt + ¢,) for duration t effects

(e + ) = exp (—+Agugelcos X — sin Y1) ly()
= R,(— )R (AppgDR () |y (1)) R,(0) = e™'2°
We learn two things:
 Amplitude and duration of the drive controls the polar angle

* Phase of the drive controls the azimuthal angle




Single-qubit gates in practice

* |n practice, finite-duration drive must be applied as pulses
U = exp <_éAO/’tOTX> — U =exp <—é [IOT AO(I)//tOdl‘] X>

* Previous derivation ignored a lot of small nonlinearities

 We don't have truly continuous control capabillities
(control electronics are digital)

— Parametric Rx gate is unrealistic

— Calibrate Ry at specific angles: Typically mm (X) and /2 (SX)




Single-qubit gates in practice

Rz can be parametric:

If we apply SX pulses with phases ¢1, P1+d2, P1+d2+Ps, ...
U=R(=¢— = P3) SXR(P, + Py + P3)

RZ(_¢1 — ¢2) SX RZ(¢1 + ¢2) 7 RZ((D1) - SX [ RZ(CDQ) - SX H Rz(q)3)

Rz(_¢1) 5X Rz(d)l)  SX HRA-P1-do-P3) —
= R(=¢b; — > — ¢3) SX R.(¢h3) SX R (¢h,) SX R (¢))
We carry the Z angle over to the final measurement, where it is unobservable:

Py, = 10,1 |w)|* = | (0,1 |R() |y) |

SX and parametric R; are all we need:

0.0 =K (#-3) . (5) R xR (5) R (3-5)
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The drive frame

From the simulation exercise yesterday:
A
H(t)=a)|T><T|+Ecosat(|T><l|+|l><T|)

* Inthe “lab frame”
() =T |exp (—1 [y H@z ) | 11(0)
the qubit winds about the Z axis rapidly

 |nthe “drive frame”
9(0)) = exp (—5t) 17(0))

— Drive physics is revealed by using a frame
(unitary transformation) that rotates with the qubit
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Coupling the qubits

Capacitative coupling results in an exchange interaction:

. 912
H=Y_, H§’ + C,V,V, Vi (Ug Vs
=X 12[_](]) — 81 ( (1) _aT(l)) (a(2) _aT(Z)) i Ci= I Co==
— 0 ' ”» _é_ _é_
XX type, “transverse coupling 004, 06560

If we diagonalize H-:
H= 3% E, w2 v [
we find that £, — E, , # E; ,, — E;,,, In general.

In the qubit space,

£0
H = Ey|00)(00] + Eyy[01)(01] + Eygl 10)(10] + E;, [11)(11] ;
Ey + Eo + Eyg+ Eyy

_ - i Eyy — Ey; :Elo—EuIZ_l_ Egy + Ey) ;ElO_EHZI+ Egy — Ey) ;EIO+E“ZZ

— “// Interaction” induced!



Entangling gates

Statically coupled qubits have “always-on” entangling interactions

— Jo entangle the qubits in a more controlled manner,
e Keep the coupling small and use drive-induced entanglement

e // term depends on the detuning (frequency diff.) of the qubits
— Make the qubit frequencies tunable, bring the frequencies close only
when necessary

e Create dynamical coupling
¢ etc.

All are highly complicated to implement

— Entangling gates are the most noise-prone operations in NISQ
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Dispersive measurement

(a) SIGNAL CREATION SIGNAL DETECTION
Wr

Diagonalize qubit-qubit Hamiltonian

— // Interaction

300 K CRYOSTAT
3K

Diagonalize a qubit-resonator system S I\
Q,

— / bTb Interaction, I.e., resonator I

frequency depends on qubit state I

(dispersive shift) « Qub.t

In other words: r -

Qubit state can be measured through

resonator frequency measurement © |
- ' 2X/2m
2 0'8------------—-i\
E ) 0)
® 2m e —— S Emmmm———
-2 -1 0 1 2

Frequency, wgF - W, (a.u)

1904.06560
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Ramsey interferometry

N DL
T
/

P(1) = % [cos (n <§ + 5@7)) + Swt
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sSummary

* (Cooper pair box is formed by replacing the inductor of an LC
circuit with a Josephson junction

* Transmon (CPB with E;/E-> 1) has lowest two levels usable
as a qubit

* Arbitrary single-qubit gate can be eftected by resonantly
driving the qubit

* Coupled qgubits entangle
* Qubit state can be measured from a coupled resonator

* Qiskit pulse API allows detailed control of drive pulses on
supported IBM Quantum backends



