Fabrication of Superconducting Quantum Sensor

@KMI School 2024 Nagoya University/KMI

March 7th 2024 University of Tokyo/ICEPP Tatsumi Nitta

Superconducting Quantum Computer Quantum sensor weak EM field -10^{6} x atom - Easy to do Long coherence time manipulate $-O(100) \mu s$ or more - Drastically decrease non-demolition readout uncertainty ow noise environment Low dark count - mK temperature - EM/Magnetic shields ! Superconducting qubit must be suitable as a sensor

Physical design (2D Resonator)

1 mm (

Kono et.al., 2305.02591v1 Nb Si 10 µm 40 µm

Physical design (3D Resonator)

Good qubit ~ Clean qubit

Cross-section of JJ

Dust O (10) um

O (100) nm

Dust/Scratch
Dust
Other
metals
Hydrogen
Oxidation
defeat

What environment you need?

Clean room

ISO Class 5 is fine (<30 x 5 um dusts/m^3)

Equipments

- Sputter
- EB evaporator
- Chemical draft
- Photolithography
- EB lithography
- Plasma etcher etc…

Deposition in high vacuum

< 10⁻⁸ Pa seems very important

Standard Fabrication Process

1. Design: Resonator Detailed design is needed dedicated simulation.

ex: Ansys HFSS, Comsol multiphysics

Simulation on finite element method are generally used.

FEM simulation is necessary.

Simplest case S ϵ $C = \epsilon \frac{S}{T}$

To know actual capacitance of the circuit, dedicated

12

PhysRevLett.11.104

from Ambegaokar-Baratoff formula $\rightarrow E_J$ can be designed $\hbar\pi\Delta_{sc}$ $E_J \sim \cdot$ $4e^{2}R$ by AlOx resistance (R) at OK

In reality, controlling *R* is not easy.

People do try and error at their environment

Mostly the size is the order of $O(100) \times O(100) \times O(1)$ nm thickness of AlOx

1. Design: Advanced Designs

Charge qubit

Transmon $E_C \ll E_I$

Cooper pair box

 \rightarrow Fixed freq. qubit

Fluxonium

 \rightarrow qubit/magnetometers

Flux qubit

 \rightarrow qubits/ study amorphous...

SQUID

 \rightarrow Tunable freq. qubit Josephson Parametric Amplifier

 $E_C \sim E_J$ $E_L \ll E_J$

 \rightarrow Katayama-san's study

Traveling Wave Parametric Amplifier

2. Select Substrate

Silicon

Resistance: >10^4 Ω cm (Floating Zone) Loss tangent: ~ 10^-4 @ 10 mK

Price: 1000 JPY / 100 mm wafer

Sapphire

Resistance: $10^{11}\Omega$ cm Loss tangent: ~ 10^-8 @10 mK Price: 4000 JPY/ 100 mm wafer

15

2. Substrate Cleaning

Shipped wafers

- Source of impurity –
- Dusts/Organic substances
- during fabrication
- Dusts/Organic substances
 - during packing
- Native oxide on silicon
 - substrate etc…

Typical Cleaning Processes Piranha solution H2SO4 + H2O2

Removing organic substances

Contamination directly affects coherence of qubits

<u>Hydrofluoric Acid (HF)</u> Remove oxidation layer & Hydrogen termination Before HI After HF SiOx layer

Make sure to use chemical draft and proper protections

3. Thin film deposition

Cons:

- Homogeneity film
- Larger area deposition
- → Used to make capacitors

← Sputter EB vapor deposition →

AI

Cons:

- Directivity
- Faster deposition
- \rightarrow Used to make JJ

4. Photolithography

0. Prepare substrate

1. Spincoating Photoresist

metal (Nb etc) Silicon/Sapphire

Photoresist metal (Nb etc) Silicon/Sapphire

Good example for over ~ 30 years old

spincoater

3. Development remove exposed or unexposed resist metal (Nb etc) Silicon/Sapphire

Development

1 um resolution \rightarrow only for larger structures

Photolithography

2. Ashing 1. Etching **Removing resist** not masked by resist or Silicon/Sapphire Silicon/Sapphire Two ways 1b. dry etching Similar to sputtering CF+ Called RIE (reactive \mathbf{V} ion etching) Silicon/Sapphire

Where we are

After Step 1-5, capacitance and resonator (in the case of 2D resonator) are fabricated.

6. Electron Beam (EB) lithography

ex) UV Photolithography $\sim 1\,\mu m$ (EUV can go better in semiconductor industry) EB lithography ~ 10 nm

- UV lights: ~10^-7 m, electron: ~10^-10 m, accelerator: $< ~10^{-17}$ m
 - Electron beam has higher energy than UV \sim Higher resolution

Processes are the same as photolithography

7. Shadow evaporation 1. First deposition "Manhattan" $\Phi = 0^\circ, \ \theta = 45^\circ$ (a) CSAR θ 2. Oxidation MMA

Supercond. Sci. Technol. 33 06LT02 (2020)

Cross-section

view

JJ

3. Second deposition $\Phi = 90^\circ, \ \theta = 45^\circ$

7. Shadow evaporation

Plassys system is a standard for academic use.

7. Shadow evaporation

Before deposition

After deposition

8. Lift-off

resist layer.

A process to remove unnecessary Aluminium film. NMP (N-methylpyrrolidone) is used to dissolve

Where we are

1 mm (

...........

Nb Si 40 µm

Before cryogenic test…

9. Microscope

Failure example

Obvious failure ones goes to trash bin

good example

Picked up clean ones

9. SEM

SEM(scanning electron microscope) Cons: Reveal junction structure Pros: "SEM barn" -> can't use for real sample

10. Resistance Measurement

Remember $E_J \sim \frac{\hbar \pi \Delta_{sc}}{4e^2 R}$ Only effective test at room temperature

11. Resistance Measurement

- 4 wire measurement for precise reading
- current will be around uA (higher current burns JJ)
- Grounded by metal plate below wafer

- Minimum contact to avoid making scratch

11. Dicing

- Damage inside wafer by laser - Expensive but clean cutting

Looks trivial but technically difficult process

Automatic dicer

Stealth dicer

- Cutting physically by blade - Smilier but more unclean dust and cleaning water

Connecting qubit to 12. Wire bonding macroscopic coax cables

12. 3D-cavity packagingCavity made
by milling machineCu for decent cavity
AI, Nb for high quality onesLoading qubit
on cavity

Ready to measurement!

Next lecture shows how to measure these qubits

Introduced basic process to make a superconducting qubit

Backup

LC共振器の量子化

共振周波数 $1/2\pi\sqrt{LC}$

なので

手始めに、おなじみのLC共振回路を量子化してみる。

キャパシタの電荷Qと共振回路を貫く磁束 Φ は $Q = CV, \Phi = LI$

 $I = \frac{dQ}{dt}, V = \frac{d\Phi}{dt}$ $\frac{d^2 Q}{dt} = -\frac{Q}{LC}, \frac{d^2 \Phi}{dt} = -\frac{\Phi}{LC}$

より0でない $\Delta Q \cdot \Delta \Phi > \frac{1}{2}$

ただしこれでは|0>と|1>の操作が極めて難しい エネルギーギャップ($\hbar\omega_{LC}$)が等間隔のため エネルギーギャップを変えるために、LかCに非線形性を導入。

ラグランジアンとハミルトニアンはそれぞれ $\mathscr{L} = \frac{Q^2}{2C} - \frac{L}{2} \left(\frac{dQ}{dt}\right)^2, \quad \mathscr{H}_{LC} = \frac{Q^2}{2C} + \frac{\Phi^2}{2L}$

共振器内の光子の生成・消滅演算子を $a = \frac{1}{2\hbar} \sqrt{\frac{L}{C}Q} + \frac{i}{2\hbar} \sqrt{\frac{C}{L}} \Phi \qquad a^{\dagger} = \frac{1}{2\hbar} \sqrt{\frac{L}{C}Q} - \frac{i}{2\hbar} \sqrt{\frac{C}{L}} \Phi$

とすると交換関係は[a, a^{\dagger}] = 1、 $\mathcal{H}_{LC} = \hbar \omega_{LC} \left(a^{\dagger} a + \frac{1}{2} \right)$

ジョセフソン接合

- 超伝導-絶縁体-超伝導のサンドイッチを作る - 冷やすと超伝導体が1つの巨大な物質波を形成 (ボースアインシュタイン凝縮) - 隣接した超伝導体はそれぞれ異なった位相を持つ →位相差を吸収するために電流が流れる。

 $I = I_0 \sin \theta$ 定量的にジョセフソン関係: $V = \frac{\hbar}{2e} \frac{\partial \theta}{\partial t}$

非線形IC共振器の量子化

 $\Phi_0 = h/2e$ を使って、磁束を $\Phi_I = (\theta/2\pi)\Phi_0$ と定義すると

 $Q = CV \pounds \mathcal{D}$

 $\frac{dQ}{dt} = C\frac{dV}{dt} = -$

$$\frac{\hbar}{2e}\frac{\partial\theta}{\partial t} \rightarrow I = I_0 \sin\left(2\pi\frac{\Phi_J}{\Phi_0}\right), \ V = \frac{d\Phi_J}{dt}.$$

$$-I_0 \sin\left(2\pi \frac{\Phi_J}{\Phi_0}\right)$$

→
$$C \frac{d^2 \Phi_J}{dt^2} = -I_0 \sin\left(2\pi \frac{\Phi_J}{\Phi_0}\right)$$

Lagrange方程式

非線形IC共振器の量子化

Lagrangian(t

- ここで $E_I = I_0 \Phi_0 / 2\pi$ (Josephson Energy),
 - $E_C = e^2/2C$ (Charge Energy),
 - $n_{C} = Q/2e$ (Cooper対の個数)
- を導入すると、(Legendre変換より)

 $\mathscr{L}_{q} = \frac{C}{2} \left(\frac{d\Phi_{J}}{dt} \right)^{2} + \frac{I_{0}\Phi_{0}}{2\pi} \cos \left(2\pi \frac{\Phi_{J}}{\Phi_{0}} \right)$

 $=\frac{Q^2}{2c} + \frac{I_0\Phi_0}{2\pi}\cos\left(2\pi\frac{\Phi_J}{\Phi_0}\right)$

ハミルトニアンがかけた $\mathscr{H}_q = 4E_C n_C^2 + E_J \cos\theta$

非線形IC共振器の量子化

生成消滅演算子は

ジョセフソン接合によって、扱いやすい2準位系ができた。 これをトランズモンという。

$$\frac{1}{C} \int_{-\infty}^{\frac{1}{4}} \frac{a+a^{\dagger}}{\sqrt{2}}, \qquad \theta = \left(\frac{8E_C}{E_J}\right)^{\frac{1}{4}} \frac{a-a^{\dagger}}{i\sqrt{2}}$$

$$\overline{E_C E_J} - E_C a^{\dagger}a - \frac{E_C}{2}a^{\dagger}a^{\dagger}aa$$

 $E_I/E_C \gg 1 として$ $= \hbar \omega_q a^{\dagger} a + \frac{\hbar \alpha_q}{\gamma} a^{\dagger} a^{\dagger} a a$ $\cos\theta \simeq 1 - \theta^2/2! + \theta^4/4!$ を使っている

トランズモンとLC共振器の結合

トランズモンの電荷等を直接読みだそうとすると壊れやすいので、 分散シフト読み出しを通常おこなう。

アルミの転移温度~1.2 K

低いエネルギーを当てる。 熱ノイズが温度に比例

 $P = k_b bT$

極低温 (mK) の必要性

- 1. ジョセフソン接合を超伝導温度まで下げたい
- 2. 分散読み出しはqubitの状態を変えないように

通常の実験は~10 mKでおこなっている

冷やす方法

到達温度	手法		
77K	液体窒素		
4.2 K	液体ヘリウム4		
1 K	液体ヘリウム4の減圧排気		
0.3 K	液体ヘリウム3の減圧排気		
5 mK	希釈冷凍機		
1 <i>µ</i> K	断熱消磁		

希釈冷凍機

千円? 数十万?

100万円? 1000万円?

1億円? 1000万円?

熱の制御

主に3つ

- conductive heat (伝導)
- convecting heat (対流)
- radiative heat (放

希釈冷凍機の冷凍性能 $100-1000 \ \mu W$

恐ろしい寒暖差

Conductive Heat

$$\longrightarrow (A)_{\lambda} () \xrightarrow{\dot{q}_{\text{cond}}}$$

$$\dot{q}_{\text{cond}} = A/L \int_{T_1}^{T_2} \lambda(T) dT = A/L \left[\int_{4}^{T_2} \lambda(T) dT - \int_{4}^{T_1} \lambda(T) dT \right]$$

~10 K以上では電子が熱を伝えるので ほぼ電気伝導度の同じ順番と考えて良い それ以下ではフォノンによる伝導になる

異なる熱ステージの接続にはステンレスが 良く使われる。

Convecting Heat

流体的振る舞いのとき (高圧)

$$\dot{q}_{\rm gas} = \overline{\lambda} A \Delta T / d$$

分子的振る舞いのとき (低圧)

 $\dot{q}_{gas} = k a_0 P A_i \Delta T$, [watts]

希釈冷凍機は高真空で動いている ADMXは 10^{-8} Paくらい

Radiative Heat

$\dot{q}_{\rm rad} = \sigma E A (T_2^4 - T_1^4)$

A2.2 EMISSIVITY OF TECHNICAL MATERIALS AT A WAVELENGTH OF ABOUT 10 μ m (ROOM TEMPERATURE) (SEC. 2.4)

Material	Emissivity		
	Polished	Highly oxidized	Common condition
Metallic			
Ag	0.01		
Cu	0.02	0.6	
Au	0.02		
Al	0.03	0.3	
Brass	0.03	0.6	
Soft-solder			0.03
Nb, crystalline, bulk			0.04
Lead	0.05		
Та	0.06		
Ni	0.06		
Cr	0.07		
Stainless steel			0.07
Ti			0.09
Tin (gray), single crystal			0.6
Nonmetallic			
IMI 7031 varnish			0.9
Phenolic lacquer			0.9
Plastic tape			0.9
Glass			0.9
Ti Tin (gray), single crystal <i>Nonmetallic</i> IMI 7031 varnish Phenolic lacquer Plastic tape Glass			0.09 0.6 0.9 0.9 0.9 0.9 0.9

冷たい

実際の様子

radiative shields

ステンレス & 長い (くねくねさせる)

金メッキ or 銅

フィルター

信号線は超伝導

重大な弱点: 量子デバイスは有効体積が小さすぎる

例: SQUIDは超高感度磁場センサーだが そのループに入る磁束にしか感度がない。

だいたいの素粒子実験は有効体積が物を言う

→ マクロなスケールの応答を反映させる必要がある

(もちろん小さくても良い実験もある)

57

既にcmスケール

104倍有効体積を増やせている

