How to use superconducting qubits Measurement setup & sensor application

2024.3.7 KMI school 2024 lecture series (6-2) Shion Chen (UTokyo/ICEPP)

# **Packaging & Installation**



 $\circ$  Mechanically attached to the coldest plate of the dilution refrigerator (10mK)  $\circ$  All microwave operation (1-10 GHz)



### Coldest available .....



FIGF2GS2heScherectorAppendicAppMXDMeXedetectornpompnenetthe The mi crowarevere variation conservation that the the test of te The To Manaheats Sources suity vity and elec- and and 4. trontcontestisatiseinseried into the magnet good bis callede "the insert'sert'aridarigens peraparatsurges are indiantidated the the right dependent and mean astronistically air antraismisthe there wave travity

#### ity. ityhe Thucking met networks the met and at the site of the chertronias has kagebtookelow of TmTwoTwo HallHallpesbes breakecatedeaple and of the kingking monitonithe thedialdtat thecelectronics siteridgring quisiteritionetramerer isitvishinit baterablerableritimitth probes are breibatode offet CIC-802002A JutA diffeener fronfrbakesheshore.

#### 2 BCav Gavity

The TAD MR Marie avisya is appropriate data distant estimates steel (136 I36 rightight-clarulatinghindricality proprint in the sub-m imlington sthil and the imdiandiameter work 050 m 5 m diam eteretoppoppening wels of nunoting wele thegeing cavitavity and prentstates a romrone wally all stantantar the center teingsingrahuminumidexidearotarmatmaturThisThis allew the thur fundamental TA the like de adeathat ples to

detectorbe væredrigenir 580 3201 2112 2890 8901 2112 Both 100-250 mK the staisteislessesteeligevind and toppopponiturings ade are plated with WOF HOF Hoppopper at manimum thicknistsness of 0.080 film and aben bern called a for one ar stat the He<sup>3</sup> evaporates from LHe<sup>3</sup> to LHe<sup>4</sup> phase

the toppoppey statistic diagonal topoppey statistic diago pathathgungabsthe the seprerisled oladointo t... skinstiptlepthingiand and thus producing high Atastans for the therefeeter [19].[19] he Thevice visystem tand and the generatic fieldfield filrofilet he thai main gmetgrath dan seensen Figs. 3

The The appreciation of the theory of the th

hand and many second and the man and the m to the the put put por the Thespresence of the inging toddesvers

### Convection (via gases in the the indication of the presence of the presence of the presence of the two of the presence of the

1K Pot

3He Flow

1A and and IBne Thenforantiactor the taxicavit

#### a Cryon on Ci Ci Marda the column to south the formation of the Ci Metermeture of

trontron ignering the Hornformetartor

surrounding the the cavity and course the therthe made of moving it in ind code to Tito at been preserves  $\partial H_{d/4} H_{d/4}$ 

### **Measurements = checking the microwave RF response**

Inject a RF to the sample  $\rightarrow$  See the amp. & phase of the transmission (reflection)

#### e.g. Cavity measurement

Vector network analyzer (VNA)







Input RF frequency [GHz]

#### **Cavity = Photon storage**

- $\circ$  Store photons at the resonant frequency
- $\circ$  Reflect photons at the other frequencies
- Figure of merit of stored photons: Q-value
  - e.g. holes (escape), rough surfaces (absorption)  $\rightarrow$  low-Q

Any metallic containers are effectively MW cavities

OUT

Mili-Kelvin Quantum Platform

Cryogenic Research Center @UTokyo Asano campus



Y. Y. Gao et al. PRX Quantum 2, 040202



Eccosorb filter → Isolator
 Cryoperm shield 
 S
 Quantum-limited amplifier
 Amplifer
 Amplifer

 $\bigcirc$  Signal generator

Microwave mixer

Power splitterCurrent source



### **AWG (Arbitrary Wave Generator)**

Low freq. pulse with finite time width 30-100MHz



High freq. continuous wave O(1-10GHz)





### Mixer

High freq. pulse with finite time width

LO



Y. Y. Gao et al. PRX Quantum 2, 040202



Y. Y. Gao et al. PRX Quantum 2, 040202



K&L 6L250-12000





#### **Attenuators**

Too strong RF: Heats up the 10mK stage Bad for qubit coherence

 $\rightarrow$  Dump the power at the higher temp stage

#### **Noise filter**

Shutout the stray wave, higher harmonics etc. Low-pass filter: eliminate >O(10GHz) Ecosorb filter: eliminate > 1THz etc.





Y. Y. Gao et al. PRX Quantum 2, 040202

### Quantum amp. (e.g. JPA/TWPA) @10mK

Can we put the HEMT on the 10mK stage?

 $\rightarrow$  No, because of the power dissipation generating heat  $\leq$ 

### → "Passive" amplifier without DC power consumption

### e.g. Josephson Parametric Amplifier (JPA)

Non-linearity of  $JJ \rightarrow$  wave mixing





Pump power moves to signal  $\rightarrow$  amplification  $\gtrless$ Gain: 20dB Noise temperature: 0.2-0.4K





### Room temperature amp.

Signal is large enough at this point.  $T_{noise}$ ~300K is now ok.

### **Digitizer (ADC)**

Sample to obtain the outgoing pulse amp/phase.

Y. Y. Gao et al. PRX Quantum 2, 040202

# Gate operation $|g\rangle \rightleftharpoons |e\rangle$ ("drive")

Coupling between cavity Coupling between cavity

Jaynes-Cummings Hamiltonian

$$\mathcal{H}_{\rm JC} = \frac{\hbar \omega_q}{2} \sigma_z + \hbar \omega_c a^{\dagger} a + \hbar g (\sigma_+ a + a^{\dagger} \sigma_-).$$
free qubit H free photon H qubit-photon interaction
Coupling const. ~  $\mu \cdot E$ 
 $\mu$ : qubit EDM ×O(10<sup>6</sup>) stronger than a single atom







### Two bit gate operation: "Cross resonance"

Send the control bit a resonant drive to the target bit



### **Readout through the cavity**





### **Decoherence - modes and sources**

### Longitudinal relaxation (T<sub>1</sub>): $|e > \rightarrow |g > de$ -excitation

- Spontaneous emission
- Cooper pair breaking (cosmic rays?)
- Coupling to high-loss two-level systems (TLSs) in the material

### Transverse relaxation ( $T_2^*$ ): randomization of the $|e\rangle/|g\rangle$ coeff.

- $\circ$  Charge/flux noises
- $\circ$  Residual thermal photons in the cavity etc.



#### <u>Müller et al. (2019)</u>









Metalic shield to suppress the spontaneous emission (2D impl.)



(b)Longitudinal relaxation

Excitation

 $|0\rangle$ 

Relaxation





Intra-chip mode (2D impl.)

# Sensor application

# Why qubits are good sensors

Low (µeV) & variable energy threshold

- Access to phase information (analog & interference)
- Yet acceptably low noise level

### **Superconducting qubits:**

• Strong coupling to photon: 10<sup>6</sup> stronger than single atom

$$\mathsf{EDM}: \mu \sim Qd$$

$$\mathsf{JJ} \boxtimes \qquad \uparrow \qquad d = O(0.1 \mathrm{mm})$$

$$\mathsf{macroscopic}$$

### Single photon counting using superconducting qubits

Photons in the cavity → qubit frequency changes ("ac Stark shift")



(b) Shift in qubit frequency: number splitting



Detuning can be detected by the Ramsey spectroscopy

### **Ramsey spectroscopy for ac Stark shift detection**



### **Ramsey spectroscopy for ac Stark shift detection**



= 38 ns

100

120

0.2

0.1

0.0

0

20

40

60

Double  $\pi/2$  pulse separation (ns)

80

**Obs. of the "Ramsey fringe"** 

- → Project to number state
- → **Δn=0**



### **HEP** application: Wave-like DM search

DM converted to photon Axion: by B-field Dark photon: by it own

![](_page_21_Figure_2.jpeg)

### Single photon counting → Evade the SQL

Readout from another cavity on the back

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

Accumulate photons in the storage cavity

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

### $JJ \times 2 = SQUID \rightarrow Freq.$ tunable qubit

Flux bias  $\rightarrow E_J$  variation  $\rightarrow$  Qubit frequency variation Φ ext  $E_{\mathrm{J},1}$  $E_{\mathrm{J},2}$  $E_{\rm J,eff}$  $E_{\rm J,eff}(\varphi_{\rm ext}) = \sqrt{E_{\rm J,1}^2 + E_{\rm J,2}^2 + 2E_{\rm J,1}E_{\rm J,2}\cos\varphi_{\rm ext}},$ 

![](_page_23_Picture_2.jpeg)

#### <u>2D: DC current→flux</u>

![](_page_23_Picture_4.jpeg)

input / output

<u>3D: Coil</u>

![](_page_23_Picture_7.jpeg)

Can also tune the cavity coupled to the qubit

![](_page_23_Figure_9.jpeg)

See also Kan Nakazono's poster

# **Beyond the photon detection**

### Hybrid quantum system → Access to:

o other field/particles than EM interaction/photons

○ other quantities e.g. pressure, temperature etc.

![](_page_24_Figure_4.jpeg)

HEP application:

5th force search, gravitational wave?

HEP application: Axion-electron search

### Direct excitations by the dark matter

See also Karin Watanabe's poster

#### **Coherent E-field from DM-converted photons**

![](_page_25_Figure_4.jpeg)

#### **Drive pulse for qubits**

![](_page_25_Figure_6.jpeg)

Initialize to  $|0\rangle$ , pause and measure

Repeat N<sub>try</sub> times & count the number of  $|1\rangle$ 

![](_page_25_Figure_9.jpeg)

Excitation rate after a 100µs pause: 0.01%-10%

$$p_{ge}(\tau) \simeq 0.12 \times \kappa^2 \cos^2 \Theta \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{f}{1 \text{ GHz}}\right)$$
$$\times \left(\frac{\tau}{100 \ \mu\text{s}}\right)^2 \left(\frac{C}{0.1 \text{ pF}}\right) \left(\frac{d}{100 \ \mu\text{m}}\right)^2 \left(\frac{\rho_{\text{DM}}}{0.45 \text{ GeV/cm}^3}\right)$$

Counting experiment  $N_{try} \sim 10^4$  within ~10sec

## **Quantum computer = Dark matter detector?**

#### e.g. IBM-Q: 5-bit machine free to anybody

#### Full capability with subscription

| Q Search by system or sim | Your systems & simulators (26) $\checkmark$ |     |       |                         |             |                           |                |  |
|---------------------------|---------------------------------------------|-----|-------|-------------------------|-------------|---------------------------|----------------|--|
| Name                      | Qubits $\downarrow$                         | QV  | CLOPS | Status                  | Total pendi | ng jobs Pro               | Processor type |  |
| ibm_seattle Exploratory   | 433                                         | -   | -     | • Online                | 0           | Osp                       | Osprey r1      |  |
| ibm_washington            | 127                                         | 64  | 850   | • Online                | 4           | Eag                       | e r1           |  |
| ibm_sherbrooke            | 127                                         | 32  | 904   | • Online                | 104         | Eag                       | e r3           |  |
| ibm_brisbane              | 127                                         | -   | -     | • Online                | 512         | Eag                       | e r3           |  |
| ibm_nazca                 | 127                                         | -   | -     | • Online                | 10          | Eag                       | e r3           |  |
| ibm_algiers               | 27                                          | 128 | 2.2K  | • Online                | 58          | Falc                      | on r5.11       |  |
| ibmq_kolkata              | 27                                          | 128 | 2К    | • Online                | 40          | Falc                      | on r5.11       |  |
| ibmq_mumbai               | 27                                          | 128 | 1.8K  | • Online                | 472         | Falc                      | on r5.10       |  |
| ibm_kawasaki              | 27                                          | 128 | -     | • Online                | 120         | Falc                      | on r5.11       |  |
| ibm_cairo                 | 27                                          | 64  | 2.4K  | • Online - Queue paused | 673         | Falc                      | on r5.11       |  |
| Items per page: 10 $$     | 1-10 of 26 items                            |     |       |                         |             | 1 $\checkmark$ of 3 pages |                |  |

#### Direct excitation searches embedded in the circuit

![](_page_26_Figure_5.jpeg)

#### Ospray processor (433 bit)

#### $T_1$ , $T_2$ , error rate etc. displayed for each bit

![](_page_26_Figure_8.jpeg)

### ✓ Many bits

#### Regularly calibrated

Performance guaranteed to some extent Bad qubits marked

### Optimized control & readout

# **Quantum computer = Dark matter detector?**

![](_page_27_Figure_1.jpeg)

Merge the DM-driven phase evolution on each bit Amplitude sum (as opposed to probability sum)

![](_page_27_Figure_3.jpeg)

#### Prerequisites: more bits, more accurate gate operation/readout, error correction

None of them is available but all of them are the requirements for future quantum computers.

#### Promising if the search can be entirely embedded to circuit program

Parasitic to the QC operation, no HW changes needed.

### How far the "future" is

#### **IBM-Q** roadmap

IBM Quantum

Development Roadmap

![](_page_28_Figure_3.jpeg)

#### Innovation Roadmap

| Software<br>Innovation                                 | IBM<br>Quantum<br>Experience                                                             | Qiskit<br>Circuit and operator<br>API with compilation<br>to multiple targets | Application Solution<br>modules<br>Modules for domain<br>specific application<br>and algorithm<br>workflows | Qiskit<br>Runtime<br>Performance and<br>abstract through<br>Primitives | Serverless 😪<br>Demonstrate<br>concepts of<br>quantum centric-<br>supercomputing | AI enhanced<br>quantum<br>Prototype<br>demonstrations of AI<br>enhanced circuit<br>transpilation | Resource<br>management<br>System partitioning to<br>enable parallel<br>execution | Scalable circuit<br>knitting<br>Circuit partitioning<br>with classical<br>reconstruction at HPC<br>scale | Error correction<br>decoder<br>Demonstration of a<br>quantum system with<br>real-time error<br>correction decoder |                                                                                   |                                                                           |   |
|--------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|
| Hardware<br>Innovation                                 | Early Canary Penguin<br>5 qubits 20 qubits<br>Albatross Prototype<br>16 qubits 53 qubits | Falcon<br>Demonstrate scaling with I/O routing with Bump bonds                | Hummingbird<br>Demonstrate scaling<br>with multiplexing<br>readout                                          | Eagle<br>Demonstrate scaling<br>with MLW and TSV                       | Osprey<br>Enabling scaling<br>with high density<br>signal delivery               | Condor<br>Single system<br>scaling and fridge<br>capacity                                        | Flamingo<br>Demonstrate scaling with modular connectors                          | Kookaburra<br>Demonstrate scaling<br>with nonlocal c-coupler                                             | Demonstrate path to<br>improved quality with<br>logical memory                                                    | Cockatoo<br>Demonstrate path to<br>improved quality with<br>logical communication | Starling<br>Demonstrate path to<br>improved quality<br>with logical gates |   |
| <ul> <li>Executed by IBM</li> <li>On target</li> </ul> | 1                                                                                        |                                                                               |                                                                                                             |                                                                        |                                                                                  | Heron<br>Architecture<br>based on tunable-<br>couplers                                           | Crossbill<br>m- coupler                                                          | 3                                                                                                        |                                                                                                                   | 1. J                                                                              |                                                                           | 2 |
| IBM Quantum /                                          | © 2023 IBM Corp                                                                          | pration                                                                       |                                                                                                             |                                                                        |                                                                                  | R                                                                                                | 75                                                                               | C                                                                                                        |                                                                                                                   |                                                                                   |                                                                           |   |
|                                                        |                                                                                          |                                                                               |                                                                                                             |                                                                        |                                                                                  | OF.                                                                                              |                                                                                  |                                                                                                          |                                                                                                                   |                                                                                   |                                                                           |   |

### Backup

![](_page_29_Picture_1.jpeg)

### 元日に鶏の鳴き声を放送(1929年)

Chicken shouts live streaming @New Year 1929

Credit: NHK放送博物館 (NHK broadcast museum)

### References

#### **Review articles**

- "超伝導量子ビット研究の進展と応用" 中村泰信
- "超伝導回路を用いた量子計算機の研究を理解するための基礎知識" 山本剛
- "Practical Guide for Building Superconducting Quantum Devices" Y. Y. Gao et al. (2021)
- "Materials in superconducting quantum bits" W. D. Oliver and P. B. Welander (2013)
- <u>"Engineering high-coherence superconducting qubits" I. Sidiqqi (2021)</u>

#### **Textbooks**

- "量子技術序論" 長田有登, 山崎歴舟, 野口篤史
- <u>"The Physics of the Dark Photon: A Primer"</u> M. Fabbrichesi et al.
- "Quantum Computation and Quantum Information" A. M. Nielsen & I. Chuang

Cooling through solving the He<sup>3</sup> into super-fluid He<sup>4</sup> ("dilution")

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_1.jpeg)

2 Create a mixture of He<sup>4</sup> & He<sup>3</sup>

at the "mixing chamber"

That's said, they don't mix much

Separated to a He<sup>3</sup>-dominant and He<sup>4</sup>-dominant phase

![](_page_33_Figure_3.jpeg)

Ref: https://ja.wikipedia.org/wiki/3He-4He希釈冷凍法

![](_page_34_Figure_1.jpeg)

③ He<sup>3</sup> evaporates to the He<sup>4</sup>-dominant phase

He<sup>4</sup>: superfluid  $\rightarrow$  behave like a gas Cooling through the evaporation heat  $^{\textcircled{\baselineskip}}$ 

![](_page_35_Figure_1.jpeg)

### **Qubit coherence time**

#### ×10<sup>6</sup> improvement over the 20 years

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_3.jpeg)

Breaking through the millisecond barrier with our single junction transmon @IBMResearch

ツイートを翻訳

![](_page_36_Figure_6.jpeg)

午後8:57 · 2021年5月20日

Noise-resilient design

e.g. Transmon  $\rightarrow$  big leap in T<sub>2</sub>

#### Noise reduction

shield, low-loss packaging RF filters, Purcell filters

### Thin film material studies

Low amorphous surface: Nb, Ta Low oxidation surface: TiN, Ta, NbN, AlN Clean interface: epitaxially grown TiN film Sophistication of the cleaning processes ...

### **Phonon detectors**

#### **Quasiparticle amplifier**

![](_page_37_Figure_2.jpeg)

#### Phonon evaporate $He^3 \rightarrow spin$ detection

"Quantum evaporation"

# Junction fabrication (top: JJ, bottom: SQUID) SEM images

![](_page_38_Picture_1.jpeg)

Dolan: 200nmx600nm 2 µm

10.kV 7.7mm x4.0k SE(UL)

6

10.0um