GPU Based Track Finding for Muon g-2/EDM Experiment at J-PARC

Hridey Chetri¹, Saurabh Sandilya¹, Deepak Samuel², Tsutomu Mibe³,

Takashi Yamanaka⁴, Taikan Suehara⁵

¹Indian Institute of Technology Hyderabad, ²Central University of Karnataka, ³IPNS KEK, ⁴Kyushu University, ⁵ICEPP, University of Tokyo

Introduction

Muon g-2/EDM experiment is dedicated to measuring the magnetic dipole moment and electric dipole moment of the muon to a very high precision[1].

$$\vec{\omega} = -\frac{q}{m_{\mu}} \left[a_{\mu} \vec{B} - (a_{\mu} - \frac{1}{\gamma^2 - 1}) \frac{\vec{\beta} \times \vec{B}}{c} + \frac{\eta}{2} (\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}) \right]$$

JPARC uses a very novel technique by using a 300 MeV/c reaccelerated thermal muon beam.

$$\vec{\omega} = -\frac{q}{m_{\mu}} \left[a_{\mu} \vec{B} + \frac{\eta}{2} (\vec{\beta} \times \vec{B}) \right]$$

Approach

Process 256 elements per block using shared memory. Each block handles hits in a 10 ns time window. Divide the Hough Histogram into coarse and fine bins to address shared memory constraints.

Result

	Functions	Time
GPU Activities	Main Kernel	136.61 ms
	Memcpy HtD	5.45 ms
API Calls	Kernel Launch	288.90 ms
	Device Sync	144.08 ms
	Cuda Malloc	49.90 ms
	Memcpy	6.32 ms

GPU activity shows much acceleration in Hough Transformation

Experimental Setup

After the ionization of muon from muonium atom, they are accelerated using LINAC till the p reaches 300 MeV/c

Challenges

Current Software

100 muons/sec/CPU 10⁵ muons/sec (for 1000 CPUs)

Required Speed

G4Sim

(PileupArranger)

StripDigi

1 minute

30 minutes

Summary and Outlook

- We have performed HT in GPU.
- We have seen good acceleration in the track finding process.
- Further refinement and clustering are needed to obtain a clean and complete track.

References

[1] M Abe et al. "A new approach for measuring the muon anomalous magnetic moment and electric dipole moment". In: Progress of Theoretical and Experimental Physics 2019.5 (May 2019), p. 053C02.

ISSN: 2050-3911. DOI: 10.1093/ptep/ptz030.