Precision Measurements Electron Magnetic Dipole Moment and

Electron Electric Dipole Moment

I am not a muon-ist

Xing Fan

Research Assistant Professor

Northwestern University starting a new group at Harvard next year looking for students/postdocs

2024 Sep 3 Muon International Physics School: Simon Eidelman School on Muon Dipole Moments and Hadronic Effects

What is Precision Measurement?

precision measurement tools

A Products Home / Lab Supplies / General Tools / Precision Measuring Tools

Precision Measuring Tools

- High-Resolution Digital Readouts
- Display Imperial or Metric Units

CPM1

Micrometer

DGM05

Displacement Indicator (Includes Barrel Adapter)

Ø3/8" to Ø1/2" Barrel Adapter

1* Travel Micrometer

What is Measurement?

What is Measurement?

Gravitational Wave Detector

two stable arms \rightarrow common mode cancellation

Common Mode Cancellation

Make the system insensitive to what you do not want to see

Always Have Two Good Measurements

AMO picture

Magnetic Dipole Moment (MDM)

Magnetic moment of an orbiting charge

angular $\mu = \frac{-e}{2m}L$

• An electron has a spin $S = \frac{\hbar}{2}$

$$\boldsymbol{S} = \frac{\hbar}{2} \quad \boldsymbol{P} \quad \boldsymbol{\mu} = \frac{-e}{2m} \times \frac{\hbar}{2} \boldsymbol{\mathcal{R}} \boldsymbol{g}$$

g_e/2= 1.001 159 652 180...

>13,000 Feynman diagrams

Electric Dipole Moment (EDM)

- electron's Compton length $\lambda = \hbar/mc$
- EDM's natural size should be d_e ~λ×e × O(1)

I take the last constant to be 1/4 (will explain why shortly)

• so, $d_e = e \lambda / 4 = e \hbar / 4 m c \lambda \eta$

 $|\eta| < 1.1 \times 10^{-18}$ (ACME II, $|d_e| < 1.1 \times 10^{-29} e^{-18}$) $|\eta| < 4.4 \times 10^{-19}$ (JILA II, $|d_e| < 4.1 \times 10^{-30} e^{-18}$) SM Prediction: $|\eta| \le 10^{-24}$

What is **n**? Why so small?

Bohr magneton

EDM is protected by the Charge-Parity symmetry (CP symmetry)

required Feynman diagram in SM

Electron/Muon MDM/EDM

Very Important Difference btw electron/muon

lifetime of electron IS infinite!

Standard Model calculation

g_e/2(theory)= 1.001 159 652 180 25(10)

Most precise prediction of the Standard Model

Two Inconsistent α Measurements

$$\alpha^{-1}(\text{Rb}) = 137.035\ 999\ 206\ (11)$$

 $\alpha^{-1}(\text{Cs}) = \ 137.035\ 999\ 046\ (27)$
probably experimental reason?

S. Guellati-Khélifa (LKB, Rb)

H. Mueller (Berkeley, Cs)

new projects using Sr and Yb are being prepared (private communication, Oxford, Northwestern)

Electron g's Current Situation

XF, et al, Phys. Rev. Lett. 130, 071801 (2023)

α discrepancy contribution is negligible in muon's g-factor δa_{μ} (from α) ~0.1 × 10⁻¹¹

SM calculation

with with with with with with $A_{99} A_{10} A_{11} A_{12} A_{13} A_{14} A_{15} A_{16}$ $\widehat{\square}_{18}$ $\widehat{\square}_{20}$ $\widehat{\square}_{21}$ $\widehat{\square}_{21}$ $\widehat{\square}_{23}$ $\widehat{\square}_{24}$ प्रयोग لا المبينة المبينية ا <u>[</u> المهم المهم المهم المهم ്യ <u>(</u> ഷ്ണ് <u>(</u> (and യ്ത്ര <u>w</u>w \mathcal{A}_{M}^{n} \mathcal{A}_{M}^{n} \mathcal{A}_{M}^{n} \mathcal{A}_{M}^{n} \mathcal{A}_{M}^{n} \mathcal{A}_{M}^{n} <u>(a)</u> <u>(</u> <u>((</u> $\frac{m}{61}$ <u>~~</u> $\overline{\Delta}_{\overline{7^{\circ}}}$ $\underline{\mathbb{M}}$ <u> (ි</u> 6 ЖI $\frac{\Delta}{\frac{1}{79}}$ <u>, A</u> (00) 76 <u>ര</u> <u>{}}</u> 88 $\underline{\underline{A}}_{84}$ \underline{A}_{85} \sum \mathbb{M} şΥ X Ø ଟି 92 95 $\frac{1}{103}$ most difficult

17/74

5 loop

المما الها، الكام الك (m)the fact that the the the the the the the (a) (\overline{a}) (\overline{a}) Lead lead and load and lead ()

What is an ideal g-factor measurement?

 Perfect B field very very homogeneous very very stable

electron is trying to realize them using an ion trap

 Perfectly controlled particle's motion isolated in free space no movement isolated from environment

19/74

 high statistics many particles, not interacting with each other or perfectly controlled interaction (spin squeezing?)

Principle of g-factor measurement

Electron's motion in a Penning Trap

Electron g-factor's direction

- 1. use single electron
 - Coulomb interaction is too large!

2. cool the motion as much as possible - suppressed systematic shifts

very Atomic Physics approach (clock-approach)

- 3. non-destructive detection
 - repeatability, reproducibility, high duty cycle

Electron Detection with Axial Motion

Quantum Cyclotron Motion

Quiz: I am going to show you two kids. Tell me which one is taller?

- measure the difference
- measure simultaneously
- measure at the same location

Disadvantage of electorn: spin measurement

 Unlike muon, measuring electron's spin is not obvious!

electron \rightarrow need to detect magnetic interaction

How to Detect Transition?

Apparatus

Penning trap

LHe Dewar with a magnet

Spectroscopy Transition Prob. vs Drive Freq

Apply drive, measure cyclotron and anomaly transition prob.

32/74

Need ground state cooling!

	first trap	Ground state cooling
ions	1953 Paul	1989 Wineland
electron	1959 Dehmelt	never

Major Systematic Error: Cyclotron Image Charge Shift

Image Charge of Image Charge...

- $v_c = c/2L \times n$ $v_c \neq c/2L \times n$ large shift!small shift!
- > Δv_c^{ICS} depends on trap cavity's resonance =cavity QED

 \rightarrow measure cavity resonances and correct

Huge!

Measurements at Different Fields

average 11 fields from 3 T to 5.5T

 $g/2 = 1.001 \ 159 \ 652 \ 180 \ 59 \ (13)$ $\alpha^{-1} = 137.035 \ 999 \ 166 \ (15)$

Reporting Precision in δg **or** δa ?

$$a \equiv \frac{a}{2} - 1$$

PHYSICAL REVIEW LETTERS 130, 071801 (2023)

Measurement of the Electron Magnetic Moment

$$\frac{g}{2} = 1.001\ 159\ 652\ 180\ 59(13) \quad [0.13\ \text{ppt}],$$

$$a_{e} = 1159\ 652\ 180\ 59\ (13) \times 10^{-14}\ (0.11\ \text{ppb})$$

X. Fan⁽⁰⁾,^{1,2,*} T. G. Myers,² B. A. D. Sukra,² and G. Gabrielse^{2,†}

VS

PHYSICAL REVIEW LETTERS **131**, 161802 (2023) Measurement of the Positive Muon Anomalous Magnetic Moment to **0.20** ppm

$$g_{\mu}/2=1.001\ 165\ 920\ 55\ (24)\ (0.24\ ppb)$$

 $a_{\mu}(FNAL) = 116592055(24) \times I^{10}\ (0.20\ ppm),$

D. P. Aguillard⁰, ³³ T. Albahri⁰, ³⁰ D. Allspach⁰, ⁷ A. Anisenkov⁰, ^{4,a} K. Badgley⁰, ⁷ S. Baeßler⁰, ^{35,b} I. Bailey⁰, ^{17,c} L. Bailey@²⁷ V. A. Baranov,^{15,d} E. Barlas-Yucel@²⁸ T. Barret@⁶ E. Barzi@⁷ F. Bedeschi@¹⁰ M. Berz@¹⁸ M. Bhattacharya@⁷ H. P. Binney@³⁶ P. Bloom@¹⁹ J. Bono@⁷ E. Bottalico@³⁰ T. Bowcock@³⁰ S. Braun@³⁰ M. Bressler@, ³² G. Cantatore@, ^{12,e} R. M. Carey@,² B. C. K. Casey@,⁷ D. Cauz@, ^{36,i} R. Chakraborty@, ³⁹ A. Chapelain@,⁶ S. Chappa,⁷ S. Charity@, ³⁰ C. Chen@, ^{33,22} M. Cheng@, ²⁸ R. Chislett@, ²⁷ Z. Chu@, ^{22,3} T. E. Chupp@, ³³ C. Claessens@, ⁵⁶ M. E. Convery⁰,⁷ S. Corrodi⁰,¹ L. Cotrozzi⁰,¹⁰³ J. D. Crnkovic⁰,⁷ S. Dabagov⁰,⁸¹ P. T. Debevec⁰,²⁸ S. Di Falco⁰, G. Di Sciascio⁰,¹¹ B. Drendel⁰,⁷ A. Driutti⁰,^{10A} V. N. Duginov⁰,^{15d} M. Eads⁰,²⁰ A. Edmonds⁰,² J. Esquivel⁰,⁷ M. Farooq⁰,³³ R. Fatemi⁰,²⁹ C. Ferrari⁰,^{10,j} M. Fertl⁰,¹⁴ A. T. Fienberg⁰,³⁶ A. Fioretti⁰,^{10,j} D. Flay⁰,³² S. B. Foster⁰, H. Friedsam,⁷ N. S. Froemming,²⁰ C. Gabbanini⁰,^{10,j} I. Gaines⁰,⁷ M. D. Galati⁰,^{10,h} S. Ganguly⁰,⁷ A. Garcia⁰,³ J. George⁰,^{32,k} L. K. Gibbons⁰,⁶ A. Gioiosa⁰,^{25,1} K. L. Giovanetti⁰,¹³ P. Girotti⁰,¹⁰ W. Gohn⁰,²⁹ L. Goodenough⁰, T. Gorringe⁰,²⁹ J. Grange⁰,³³ S. Grant⁰,^{1,27} F. Gray⁰,²¹ S. Haciomeroglu⁰,^{5,m} T. Halewood-Leagas⁰,³⁰ D. Hampai⁰ F. Han⁽⁵⁾, J. Hempstead⁽⁵⁾, D. W. Hertzog⁽⁶⁾, G. Hesketh⁽⁶⁾, ²⁷ E. Hess, ¹⁰ A. Hibbert, ³⁰ Z. Hodge⁽⁶⁾, ³⁶ K. W. Hong⁽⁶⁾, ³⁶ R. Hong ^{9,21,1} T. Huo^{23,22} Y. Hu^{9,22,3} M. Iacovacci⁰,⁹ⁿ M. Incagli⁰,¹⁰ P. Kammel⁰,³⁶ M. Kargiantoulakis⁰ M. Karuza^{0,12,0} J. Kaspar,³⁶ D. Kawall^{0,32} L. Kelton^{0,29} A. Keshavarzi⁰,³¹ D. S. Kessler^{0,32} K. S. Khaw^{0,23} Z. Khechadoorian⁶, N. V. Khomutov⁶,¹⁵ B. Kiburg⁶,⁷ M. Kiburg⁶,^{7,19} O. Kim⁶,³⁴ N. Kinnaird⁶,² E. Kraegeloh⁶,³³ Z. Nickanaoohaniv, N. K. Klomuwy, D. Khougy, M. Khougy, M. Khougy, N. Kimai, K. Kimaido, E. Krieggano, T. V. A. Krylovo,¹⁵ N. A. Kuchinski,¹⁵ K. R. Laboe,⁹ J. LaBounty,⁹ M. Lacosatero,³¹ S. Leeo,³ B. Lio,²²¹ D. Lio,²²⁴ I. Logashenko,⁴⁴ A. Lorente Campos,³⁰ Z. Luo,²²⁴ A. Lucho, G. Lukicovo,²⁷ A. Lusiani,⁶⁴ A. L. Lyono,⁷ B. Macrakero,³⁴ S. Mastroiani,⁹ J. P. Millero,² S. Miozzio,¹¹ B. Mitrao,³⁴ A. Lyono,⁷ B. Macrakero,³⁵ K. Mastroiani,⁹ S. Mastroiani,⁹ J. P. Millero,² S. Miozzio,¹¹ B. Mitrao,³⁴ A. Lucho,¹⁵ C. Mastroiani,⁹ J. P. Millero,² S. Miozzio,¹¹ B. Mitrao,³⁴ A. Lucho,¹⁵ C. Mastroiani,⁹ J. P. Millero,² S. Miozzio,¹¹ B. Mitrao,³⁴ A. Lucho,¹⁵ C. Mastroiani,¹⁵ Mastroiani,¹⁵ S. Mastro J. P. Morgano, J. W. M. Morseo, J. Motto^{7,2} A. Natho^{8,n} J. K. Ngo.^{322,1} H. Nguyeno, Y. O. Suziano, J. Z. Omarovo, R. Osofskyo,³⁶ S. Parko,⁵ G. Pauletta,^{26,s} G. M. Piacentino,^{55,1} R. N. Pilatoo,³⁰ K. T. Pittso,^{28a} B. Plastero,³⁹ D. Perenice,³³ N. Pohlman,⁵⁴ B.C. Pohlyo,⁷ J. Price,⁷⁰ B. Quinno,⁴ M. U. H. Qureshio,¹⁴ S. Ramachandrano,¹⁴ E. Ramberg,⁷ R. Reimano,⁴⁴ B.L. Robertso,⁷ D. L. Rubino,⁸⁴ L. Sanito,⁷⁶ C. Schleister,⁷⁶ A. Schreckenbergero,⁷ Y. K. Semertzöhle,³⁴ D. Shenyakino,⁴⁴ M. Sothanosa,¹⁴ D. Stenyakino,⁴⁵ M. Sothanosa,⁴⁴ D. Stenyakino,⁴⁵ M. Sothanosa,⁴⁵ D. Stratakis⁹,⁷ H. E. Swanson⁹,³⁶ G. Sweetmore⁹,³¹ D. A. Sweigart⁹,⁶ M. J. Syphers⁹,²⁰ D. A. Tarazona⁹,⁶ T. Teubner®,³⁰ A. E. Tewsley-Booth®,^{29,33} V. Tishchenko®,³ N. H. Tran®,^{25,4} W. Tumer®,³⁰ E. Valetov®,¹⁸ D. Vasilkova®,^{27,30} G. Venanzoni®,³⁰ V. P. Volnykh®,¹⁵ T. Walton®,⁷ A. Weisskopf®,¹⁸ L. Welty-Rieger,⁷ P. Winter®,¹⁰ Y. Wu[®],¹ B. Yu[®],³⁴ M. Yucel[®],⁷ Y. Zeng[®],^{23,22} and C. Zhang[®]

T. Aoyana ^{12,3}, N. Asmussen⁴, M. Benayoun⁵, J. Bijners⁵, T. Blum^{7,4}, M. Bruno⁸, I. Caprini ¹⁷, C.M. Carloni Calame¹, M. Ce^{3,12,10}, G. Colangelo^{14,47}, B. Grandin^{32,48}, A. Carloni Calame^{14,48}, C. H. Davier^{14,49}, C. H. Davier^{14,49}, T. H. Davise^{14,49}, C. H. Davise^{14,49}, J. K. Kahdar ^{13,44,4}, A. Gerardin^{32,41}, M. Golterman^{34,42}, D. W. Hertzo⁴⁴, H. Kahdar ^{13,44,4}, A. Gerardin^{34,41}, T. Lubuchi^{17,49}, T. G. Hendröltz^{41,41}, P. Hudspith^{14,10}, F. Ignatov²¹, T. Lubuchi^{17,41}, B. Kubis^{41,41}, P. Hudspith^{14,10}, F. Ignatov²¹, T. Lubuchi^{17,41}, B. Kubis^{41,41}, K. Maltman ^{44,41}, K. Kunshita^{41,41}, B. Kubis^{41,41}, A. Kupich^{41,41}, L. Laub^{14,41}, C. Hehner^{45,47,41}, L. Icapshenko^{14,41}, B. Malescu, K. Maltman ^{44,41}, M. Koharkawa^{14,41}, K. Inoshita^{41,41}, B. Kubis^{41,41}, P. Stöckinger^{14,41}, T. Mihe¹⁻⁵, K. Miura^{41,41,41}, B. Stöckinger^{14,41}, T. Mihe¹⁻⁵, K. Miura^{41,41}, B. Stöckinger^{14,41}, B. Kubis^{41,41}, P. Stöckinger^{14,41}, H. Stöckinger-Kim³⁴, P. Stolffer^{14,41}, C. Venanzon^{16,41}, C. S. Hander^{14,41}, B. Shökinger^{14,41}, B. Stöckinger^{14,41}, D. Stöckinger^{14,41}, D. Stöckinger^{14,41}, J. Laib^{41,41}, C. Kenanzon^{14,41}, S. Simula^{14,41}, D. Stöckinger^{14,41}, J. Laib^{41,41}, C. Kenanzon^{14,41}, S. Simula^{14,41}, D. Stöckinger^{14,41}, J. Laib^{41,41}, D. Stöckinger^{14,41}, J. Laib^{41,41}, J. Laib^{41,41}, C. Kenanzon^{14,41}, S. Kunal^{41,41}, D. Stöckinger^{14,41}, J. Laib^{41,41}, C. Kenanzon^{14,41}, S. Kunal^{41,41}, J. Laib^{41,41}, C. J. Cherla^{41,41}, J. Laib^{41,41}, C. Kenanzon^{41,41}, J. Laib^{41,41}, J. Laib^{41,41},

38/74

Why I chose to use g (not a)

1. fair comparison with EDM?

$$\mathcal{H} = -\boldsymbol{\mu} \cdot \vec{B} - \boldsymbol{d}_{e} \cdot \vec{E}$$
$$= \mu_{B} \left(\frac{g}{2} \vec{\sigma} \cdot \vec{B} + \frac{\eta}{2} \vec{\sigma} \cdot \frac{\vec{E}}{c} \right)$$
$$= \mu_{B} \left((1 + a) \vec{\sigma} \cdot \vec{B} + \frac{\eta}{2} \vec{\sigma} \cdot \frac{\vec{E}}{c} \right)$$

Why I chose to use g (not a)

2. ICS directly shifts g (and not a)

$$\frac{g}{2} = \frac{\nu_{\rm s}}{\nu_{\rm c} + \Delta \nu_{\rm c}^{\rm ICS}} \cong \frac{\nu_{\rm s}}{\nu_{\rm c}} \times \left(1 - \frac{\Delta \nu_{\rm c}^{\rm ICS}}{\nu_{\rm c}}\right)$$

$$\frac{\Delta g}{a} = \frac{\Delta v_c^{\text{ICS}}}{v}$$

$$\int \frac{\Delta a}{a} = \frac{2}{g-2} \frac{\Delta v_c^{\rm ICS}}{v_c}$$

i.e.

For some effects that shift only one of v_c and v_s using g seems more straightforward

Able to Check Muon g-2?

Positron's Measurement

- g(e⁺) measurement at the same precision
 x30 better than ever, most precise lepton CPT test
- m_{e+}/m_{e-} at 10⁻¹¹ precision
- x10,000 better than ever
- anti-gravity test at $\delta(\bar{g}/g) \sim 0.03$ level

Collab. with Stefan Ulmer (HHU/CERN/RIKEN)

Take Home Messages

✓SIMPLIFY the experiment!

✓Think how to realize the IDEAL environment

- Perfect B field
- Perfectly controlled particle's motion
- high statistics not realized yet

partially realized

Electron Electric Dipole Moment

Electron/Muon MDM/EDM

Electron EDM is a zero-consistent measurement

Measuring non-zero (g-factor)

Measuring zero (EDM)

Is there any ball?

Electric Dipole Moment (EDM)

- violates CP-symmetry, very small in SM
- very sensitive to BSM physics

unit: charge × length $(e \times cm)$

SM BSM quarks e⁻ e $\delta \frac{\eta}{2} \sim \frac{\alpha}{\pi} \left(\frac{m_e}{m_x}\right)^2 \sin \phi_{\rm CP}$ for Φ_{CP} ~1, sensitive to ~30TeV

Principle of EDM measurement

Apply an electric field

Good Electron EDM search

electron EDM History

Science 343, 269 (2014) Phys. Rev. Lett. 119 153001 Nature 562, 355 (2018) Science, 381,46 (2023)

EDM Experiment using Atoms

- Applied electric field: 100 kV/cm
- effective electric field in TI: 60 MV/cm

polarized TI works as an electric field amplifier! Gain ~600

Molecule Thorium Monooxide (ThO)

100 V/cm • Applied E-field: effective E-field in ThO: 80 GV/cm gain ~10⁹ e remember: $\delta\eta \propto \frac{1}{E \ \tau \sqrt{N}}$

How did you choose?

many many details...

Measurement of the Electron's Electric Dipole Moment

ACME Collaboration

John Doyle

Xing Wu

DATI

David DeMille

Gerald Gabrielse

Xing Fan

FOUNDATION

Koji Yoshimura

Nick Hutzler

Satoshi Uetake

Cris Panda

ACME Collaboration Thorium Monoxide: ThO

➤ E=80 GV/cm

> very easy to make = high N > $^{3}\Delta_{1}$ state : long τ and B-insensitivity

Molecule Axis Reversal GOOD SWITCH!!

Newly Constructed Beamline at Northwestern Univ.

Magnetic Field Control

spin precession ω_s

$$\omega_s = \frac{2 \left(d_e \cdot E + \mu \cdot B \right)}{\hbar}$$

*ThO $^3\!\Delta_1$ state and switching help a lot

- 3-layer magnetic shield
- ➤ 3000 lbs = 1500kg
- ➤ 3,600 wire connections

✓ <30µG without active cancellation
 ✓ <5µG with active cancellation

The Whole Beamline

X Wu, et al, New J. Phys. 24 073043(2022)

molecule pulse spacial length ~1m

Dominant Systematic Errors

1. Imperfection of laser polarization

 × imperfection of E-field reversal
 × imperfection of laser beam shape

2. imperfection of laser frequency detuning

 × imperfection of magnetic field gradient
 × imperfection of electric field gradient

ALWAYS unexpected higher order coupling! make everything perfect!

muon EDM limit from electron EDM

Phys. Rev. D 98, 113002 Phys. Rev. Lett. 128, 131803

PTEP 2019 (5), 053C02

The most stringent limit on μ EDM is currently from the electron EDM

```
\begin{array}{ll} d_{\mu}({\rm BNL}) & < \!\! 1.8 \! \times \! 10^{-19} \ e \ {\rm cm} \\ d_{\mu}({\rm ThO}) & < \!\! 2 \! \times \! 10^{-20} \ e \ {\rm cm} \\ d_{\mu}({\rm HfF^+}) & < \!\! 1 \! \times \! 10^{-20} \ e \ {\rm cm} \end{array}
```

 $d_{\mu}(\text{FNAL}) < 1 \times 10^{-21} \ e \ \text{cm}$ $d_{\mu}(\text{J-PARC}) < 1.5 \times 10^{-21} \ e \ \text{cm}$ projected $d_{\mu}(\text{PSI}) < 6 \times 10^{-23} \ e \ \text{cm}$

arXiv:2201.08729

Many New Devices

Future EDM proposals

- laser cooled and trapped molecules SrOH, YbOH, RaOH
- cryo-assembled molecules FrAg
- trapped molecular ions ²³²ThF⁺ and ²²⁷ThF⁺ nuclear **FDM**
- molecules in a cryomatrix

David DeMille

Amar Vutha

Xing Fan

Europium

Eric Cornell

Take Home Messages

- Make the signal large!!! (large E)
- prepare good switches to isolate what you want to see!

 make everything perfect! systematic errors are always from higher order couplings!

Nuclear Electric Dipole Moment

CP-violation in Hadronic Sector

²²⁷ThF⁺: Combining Best & Best & Best & Best & Best

Pear-shape Nuclear: >10³ enhancement to Hadronic CP effect

4. insensitive to B-field fluctuation

 \succ can improve the current limit (= θ_{OCD} limit)

with 1 molecule and 1 day of measurement

5. Spectroscopy is done already!

70/74

Same Spectroscopic E-reversal

Beamline Schematics

acknowledgement: RIKEN-Harvard partnership
Sensitivity

Summary: Probing BSM

starting at Harvard 2025 July Looking for Students/Postdocs!

I got a job!

xing.x.fan@gmail.com

77/74

Nuclear Electric Dipole Moment

CP-violation in Hadronic Sector

²²⁷ThF⁺: Combining Best & Best & Best & Best & Best

Pear-shape Nuclear: >10³ enhancement to Hadronic CP effect

4. insensitive to B-field fluctuation

 \succ can improve the current limit (= θ_{OCD} limit)

with 1 molecule and 1 day of measurement

5. Spectroscopy is done already!

80/74

Neutral vs Ion

clock

electron EDM

proposed: ²²⁵RaOH ²²⁵RaOCH₃ etc

 $\delta\omega = \frac{1}{\tau} \frac{1}{\sqrt{N}}$

Same Spectroscopic E-reversal

Beamline Schematics

new and exciting developments!

Sensitivity

Toward muon g-2 sensitivity Image Charge Shift

New Idea

Earth-Sourced Axion-Nucleon-Electron Coupling

causes spin rotation near heavy block

earth-source

much larger nucleon source how to separate from static B?

Prateek Agrawal, et. al., Phys. Rev. D 108, 015017

Penning Trap Particle anti-particle Switch

XF and Mario Reig, arxiv:2310.18797

(Lab)^N_s (Astro)^e

QCD axion

10⁻⁴

 10^{-7}

0.1 1

How to Detect Transition?

n_c=0

Cryogenic ³He NMR Probe

³He

X.Fan, et al., Rev. Sci. Instrum. 90, 083107 (2019)

- Much faster/easy way to measure magnetic field/homogeneity
- Water-NMR probe does not work in the LHe-bore magnet
- invented a cryogenic ³He NMR probe!
 large signal with no optical pumping!
- \rightarrow allows measurements of g/2 at many fields

Future

Also designing an experiment for an axion can reach QCD axion at \sim meV, but only $\Delta\omega/\omega^{\sim}10^{-6}$

Why Measure v_a, not v_s?

Broad eEDM limit

electron EDM History

Science 343, 269 (2014) Phys. Rev. Lett. 119 153001 Nature 562, 355 (2018) Science, 381,46 (2023)

Molecule & Pear Nuclear = Best & Best

		$\delta heta_{ ext{QCE}}$	$_{D} \propto \frac{1}{E A \tau \sqrt{\dot{N}}}$
	¹⁹⁹ Hg current best limit	²²⁹ ThF ⁺ proposed	·
effective E field <i>E</i>	10 kV/cm	~ GV/cm	x10 ⁵ molecule enhancement
EDM size by θ _{QCD} (e×cm) <i>Α</i>	$5 \times 10^{-20} \times \theta_{QCD}$	$2 \times 10^{-16} \times \theta_{QCD}$	x10 ³ pear-shape enhancement
spin precession time τ	150 s	10s - 1000s?	$\mathcal{O}(1)$
N of count per second <i>Ņ</i>	10 ¹²	1 - 100?	research topic

> can improve θ_{QCD} limit with 1 molecule, τ =10 seconds, and 1 week of measurement

One More Best: Magnetic Field Insensitivity

want to make this small

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d_e} \cdot \vec{E}$$
$$\mu = \frac{-e\hbar}{2m} (\mathbf{L} + g \mathbf{S})$$

Developed and successfully used in eEDM. called $\underline{3\Delta1}$ state

choose a state with L = -2 and S = +1 $\rightarrow >100$ suppression of $\mu \cdot B$

> Only two known ground-state 3∆1 molecules ThF⁺ and WC

E. R. Meyer, J. L. Bohn, and M. P. Deskevich, PRA 73, 062108 (2006)
Leanhardt, Aaron E., et al. J. of Mol. Spec., 270 1 (2011)
D. DeMille, et.al., AIP Conference Proceedings, 596, 72 (2001)

Possible States to Use

there are 72 states in ${}^{3}\Delta_{1}$: Use F₁= J + I_{Th}=3/2, F = F₁+ I_F = 1

96/74

Toward muon g-2 sensitivity Superconducting amplifier

Reduce thermal linewidth by x10

ongoing in the Gabrielse group

stat.	0.029 × 10 ⁻¹²
sys. (temperature)	0.094 × 10 ⁻¹²
sys. (microwave cavity)	0.090×10^{-12}

'/74

will reduce this width by x10

²²⁹ThF⁺ structure