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Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].

– 1 –
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Table 1

Summary of the contributions to aSMµ [1–36]. After the experimental number from E821, the first block gives the main results for the hadronic
contributions from Sections 2–5 as well as the combined result for HLbL scattering from phenomenology and lattice QCD constructed in Section 8.
The second block summarizes the quantities entering our recommended SM value, in particular, the total HVP contribution, evaluated from e+e�

data, and the total HLbL number. The construction of the total HVP and HLbL contributions takes into account correlations among the terms at
different orders, and the final rounding includes subleading digits at intermediate stages. The HVP evaluation is mainly based on the experimental
Refs. [37–89]. In addition, the HLbL evaluation uses experimental input from Refs. [90–109]. The lattice QCD calculation of the HLbL contribution builds
on crucial methodological advances from Refs. [110–116]. Finally, the QED value uses the fine-structure constant obtained from atom-interferometry
measurements of the Cs atom [117].
Contribution Section Equation Value ⇥1011 References
Experiment (E821) Eq. (8.13) 116 592 089(63) Ref. [1]
HVP LO (e+e�) Section 2.3.7 Eq. (2.33) 6931(40) Refs. [2–7]
HVP NLO (e+e�) Section 2.3.8 Eq. (2.34) �98.3(7) Ref. [7]
HVP NNLO (e+e�) Section 2.3.8 Eq. (2.35) 12.4(1) Ref. [8]
HVP LO (lattice, udsc) Section 3.5.1 Eq. (3.49) 7116(184) Refs. [9–17]
HLbL (phenomenology) Section 4.9.4 Eq. (4.92) 92(19) Refs. [18–30]
HLbL NLO (phenomenology) Section 4.8 Eq. (4.91) 2(1) Ref. [31]
HLbL (lattice, uds) Section 5.7 Eq. (5.49) 79(35) Ref. [32]
HLbL (phenomenology + lattice) Section 8 Eq. (8.10) 90(17) Refs. [18–30,32]
QED Section 6.5 Eq. (6.30) 116 584 718.931(104) Refs. [33,34]
Electroweak Section 7.4 Eq. (7.16) 153.6(1.0) Refs. [35,36]
HVP (e+e� , LO + NLO + NNLO) Section 8 Eq. (8.5) 6845(40) Refs. [2–8]
HLbL (phenomenology + lattice + NLO) Section 8 Eq. (8.11) 92(18) Refs. [18–32]
Total SM Value Section 8 Eq. (8.12) 116 591 810(43) Refs. [2–8,18–24,31–36]
Difference: �aµ := aexpµ � aSMµ Section 8 Eq. (8.14) 279(76)

storage ring efforts at CERN and BNL. An alternative and novel approach is being designed for J-PARC. It will feature an
ultra-cold, low-momentum muon beam injected into a compact and highly uniform magnet. The goal of the second effort
is to improve the theoretical SM evaluation to a level commensurate with the experimental goals. To this end, a group
was formed – the Muon g � 2 Theory Initiative – to holistically evaluate all aspects of the SM and to recommend a single
value against which new experimental results should be compared. This White Paper (WP) is the first product of the
Initiative, representing the work of many dozens of authors.

The SM value of aµ consists of contributions from quantum electrodynamics (QED), calculated through fifth order in
the fine-structure constant; the electroweak gauge and Higgs bosons, calculated through second order; and, from the
strong interaction through virtual loops containing hadrons. The overall uncertainty on the SM value remains dominated
by the strong-interaction contributions, which are the main focus of the Theory Initiative.

In this paper, significant new results are presented, as are re-evaluations and summaries of previous work. Particularly
important advances have been made in distilling the various approaches to obtaining the HVP contribution from the large
number of old and new data sets. The aim of the Initiative is an inclusive and conservative recommendation. At this time,
HVP is determined from e+e� data; new lattice efforts – while promising – are not yet at the level of precision and
consistency to be included in the overall evaluation. New here is a data-driven prediction of HLbL based on a recently
developed dispersive approach. Additionally, a lattice-QCD evaluation has reached the precision necessary to contribute to
the recommended HLbL value. Together they replace the older ‘‘Glasgow’’ consensus, and reduce the uncertainty on this
contribution, while at the same time placing its estimate on solid theoretical grounds. A compact summary of results
is given in Table 1, along with the section and equation numbers where the detailed discussions are presented. The
last column provides for each result the underlying list of references used to obtain it. We strongly recommend that
these references be cited in any work that uses the results presented here. The Initiative has created a website [118],
which includes links to downloadable bib files and citation commands, to make it easy to add these references to the
bibiliography. The recommended SM value lies 3.7� below the E821 experimental result.

1. Introduction

The anomalous magnetic moment of the muon1 has, for well over ten years now, provided an enduring hint for new
physics, in the form of a tantalizing 3–4� tension between SM theory and experiment. It is currently measured to a
precision of about 0.5 ppm [1], commensurate with the theoretical uncertainty in its SM prediction. With a plan to reduce
the experimental uncertainty by a factor of four, two new experiments will shed new light on this tension: the E989
experiment at Fermilab [119], which started running in 2018, and the E34 experiment at J-PARC, which plans to start its
first run in 2024 [120].

1 The muon magnetic moment µ is a vector along the spin s, µ = g(Qe/2mµ)s. The g factor consists of the Dirac value of 2 and the factor
aµ = (g � 2)µ/2, which arises from radiative corrections. The dimensionless quantity aµ is called by several names in the literature: ‘‘the muon
magnetic anomaly’’, the ‘‘muon anomalous magnetic moment’’, and the ‘‘muon anomaly’’. All of these terms are used interchangeably in this document.
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Contribution Value ⇥1011 References

Experiment (E821 + E989) 116 592 061(41) Refs. [1, 5]

HVP LO (e+e�) 6931(40) Refs. [17–22]
HVP NLO (e+e�) �98.3(7) Ref. [22]
HVP NNLO (e+e�) 12.4(1) Ref. [23]
HVP LO (lattice, udsc) 7116(184) Refs. [24–32]
HLbL (phenomenology) 92(19) Refs. [33–45]
HLbL NLO (phenomenology) 2(1) Ref. [46]
HLbL (lattice, uds) 79(35) Ref. [47]
HLbL (phenomenology + lattice) 90(17) Refs. [33–45, 47]

QED 116 584 718.931(104) Refs. [48, 49]
Electroweak 153.6(1.0) Refs. [50, 51]
HVP (e+e�, LO + NLO + NNLO) 6845(40) Refs. [17–23]
HLbL (phenomenology + lattice + NLO) 92(18) Refs. [33–47]
Total SM Value 116 591 810(43) Refs. [17–23, 33–39, 46–51]
Difference: �aµ := aexp

µ � aSM
µ 251(59)

Table 1: Summary of the contributions to aSM
µ , as compiled in Ref. [6], except for the update

of the experimental number to the average of E821 and the first Run of E989. The first
block gives the main results for the hadronic contributions as well as the combined result
for HLbL scattering from phenomenology and lattice QCD available at the time of Ref. [6].
The second block summarizes the quantities entering the final recommendation for the SM
contribution, in particular, the total HVP contribution, evaluated from e+e� data, and the
total HLbL number. The HVP evaluation is mainly based on the experimental Refs. [52–
104]. In addition, the HLbL evaluation uses experimental input from Refs. [105–124].
The lattice QCD calculation of the HLbL contribution builds on crucial methodological
advances from Refs. [125–131]. Finally, the QED value uses the fine-structure constant
obtained from atom-interferometry measurements of the Cs atom [132], and is affected
by the tension with the more recent Rb result [133] only at a level irrelevant for aSM

µ .
Mixed leptonic and hadronic corrections enter at the same order O(↵4) as HVP NNLO and
HLbL NLO, but have been estimated as . 1⇥ 10�11 [134].

the most urgent task is to scrutinize the result of Ref. [135] in detailed comparisons with
lattice results of commensurate precision obtained in independent calculations by other
lattice collaborations. As discussed in Sec. 3, such calculations are forthcoming. If the
tensions persist, their phenomenological consequences must also be explored [136–140]
(see Sec. 6). Moreover, also the hadronic light-by-light (HLbL) contribution needs to be
further improved to meet the final precision �aE989

µ = 16⇥10�11 projected for the Fermilab
experiment [13].

A comparison of published results for HVP and HLbL, including those that were pub-
lished after the March 2020 deadline, is shown in Fig. 1. In this contribution, we briefly
review the current status from data-driven evaluations and from lattice QCD for both quan-
tities and discuss future prospects as well as future plans of the Muon g � 2 Theory Initia-
tive.
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6Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
7Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

8Department of Physics, Boston University, Boston, MA 02215, USA
9Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom

10PRISMA+ Cluster of Excellence and Institute for Nuclear Physics, Johannes Gutenberg University of Mainz, 55099 Mainz, Germany
11Helmholtz Institute Mainz, 55099 Mainz, Germany and GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt,

Germany
12Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India
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Table 1: Summary of the contributions to aSM
µ , as compiled in Ref. [6], except for the update

of the experimental number to the average of E821 and the first Run of E989. The first
block gives the main results for the hadronic contributions as well as the combined result
for HLbL scattering from phenomenology and lattice QCD available at the time of Ref. [6].
The second block summarizes the quantities entering the final recommendation for the SM
contribution, in particular, the total HVP contribution, evaluated from e+e� data, and the
total HLbL number. The HVP evaluation is mainly based on the experimental Refs. [52–
104]. In addition, the HLbL evaluation uses experimental input from Refs. [105–124].
The lattice QCD calculation of the HLbL contribution builds on crucial methodological
advances from Refs. [125–131]. Finally, the QED value uses the fine-structure constant
obtained from atom-interferometry measurements of the Cs atom [132], and is affected
by the tension with the more recent Rb result [133] only at a level irrelevant for aSM

µ .
Mixed leptonic and hadronic corrections enter at the same order O(↵4) as HVP NNLO and
HLbL NLO, but have been estimated as . 1⇥ 10�11 [134].

the most urgent task is to scrutinize the result of Ref. [135] in detailed comparisons with
lattice results of commensurate precision obtained in independent calculations by other
lattice collaborations. As discussed in Sec. 3, such calculations are forthcoming. If the
tensions persist, their phenomenological consequences must also be explored [136–140]
(see Sec. 6). Moreover, also the hadronic light-by-light (HLbL) contribution needs to be
further improved to meet the final precision �aE989

µ = 16⇥10�11 projected for the Fermilab
experiment [13].

A comparison of published results for HVP and HLbL, including those that were pub-
lished after the March 2020 deadline, is shown in Fig. 1. In this contribution, we briefly
review the current status from data-driven evaluations and from lattice QCD for both quan-
tities and discuss future prospects as well as future plans of the Muon g � 2 Theory Initia-
tive.
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Prospects for precise predictions of aµ in the SM

Contribution Value ⇥1011 References

Experiment (E821 + E989) 116 592 061(41) Refs. [1, 5]

HVP LO (e+e�) 6931(40) Refs. [17–22]
HVP NLO (e+e�) �98.3(7) Ref. [22]
HVP NNLO (e+e�) 12.4(1) Ref. [23]
HVP LO (lattice, udsc) 7116(184) Refs. [24–32]
HLbL (phenomenology) 92(19) Refs. [33–45]
HLbL NLO (phenomenology) 2(1) Ref. [46]
HLbL (lattice, uds) 79(35) Ref. [47]
HLbL (phenomenology + lattice) 90(17) Refs. [33–45, 47]

QED 116 584 718.931(104) Refs. [48, 49]
Electroweak 153.6(1.0) Refs. [50, 51]
HVP (e+e�, LO + NLO + NNLO) 6845(40) Refs. [17–23]
HLbL (phenomenology + lattice + NLO) 92(18) Refs. [33–47]
Total SM Value 116 591 810(43) Refs. [17–23, 33–39, 46–51]
Difference: �aµ := aexp

µ � aSM
µ 251(59)

Table 1: Summary of the contributions to aSM
µ , as compiled in Ref. [6], except for the update

of the experimental number to the average of E821 and the first Run of E989. The first
block gives the main results for the hadronic contributions as well as the combined result
for HLbL scattering from phenomenology and lattice QCD available at the time of Ref. [6].
The second block summarizes the quantities entering the final recommendation for the SM
contribution, in particular, the total HVP contribution, evaluated from e+e� data, and the
total HLbL number. The HVP evaluation is mainly based on the experimental Refs. [52–
104]. In addition, the HLbL evaluation uses experimental input from Refs. [105–124].
The lattice QCD calculation of the HLbL contribution builds on crucial methodological
advances from Refs. [125–131]. Finally, the QED value uses the fine-structure constant
obtained from atom-interferometry measurements of the Cs atom [132], and is affected
by the tension with the more recent Rb result [133] only at a level irrelevant for aSM

µ .
Mixed leptonic and hadronic corrections enter at the same order O(↵4) as HVP NNLO and
HLbL NLO, but have been estimated as . 1⇥ 10�11 [134].

the most urgent task is to scrutinize the result of Ref. [135] in detailed comparisons with
lattice results of commensurate precision obtained in independent calculations by other
lattice collaborations. As discussed in Sec. 3, such calculations are forthcoming. If the
tensions persist, their phenomenological consequences must also be explored [136–140]
(see Sec. 6). Moreover, also the hadronic light-by-light (HLbL) contribution needs to be
further improved to meet the final precision �aE989

µ = 16⇥10�11 projected for the Fermilab
experiment [13].

A comparison of published results for HVP and HLbL, including those that were pub-
lished after the March 2020 deadline, is shown in Fig. 1. In this contribution, we briefly
review the current status from data-driven evaluations and from lattice QCD for both quan-
tities and discuss future prospects as well as future plans of the Muon g � 2 Theory Initia-
tive.

3
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(a) (b)

Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].

– 1 –

Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent
evaluations is more di�cult, because model dependence is still a↵ecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main di↵erence is their estimate of the pseudoscalar-pole contribution, 84(4) ⇥ 10�11, lower than our value by about
2.5�, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) ⇥ 10�11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) ⇥ 10�11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescattering
e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is indeed
justified for the scalar contribution �6.8(2.0) ⇥ 10�11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [751], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

Data-driven and lattice QCD predictions are consistent

⟹ 10% uncertainty feasible (by 2025) [Snowmass ’21]
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Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].

– 1 –

Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent
evaluations is more di�cult, because model dependence is still a↵ecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main di↵erence is their estimate of the pseudoscalar-pole contribution, 84(4) ⇥ 10�11, lower than our value by about
2.5�, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) ⇥ 10�11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) ⇥ 10�11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescattering
e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is indeed
justified for the scalar contribution �6.8(2.0) ⇥ 10�11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [751], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.
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Figure 1: Hadronic contributions to (g�2)µ: (a) HVP, (b) HLbL. The pink blobs symbolize
hadronic intermediate states.

1 Introduction

Current Standard Model (SM) evaluations of the anomalous magnetic moment of the muon,
aµ = (g�2)µ/2, differ from the value measured at the Brookhaven National Laboratory [1]

a
exp
µ = 116 592 089(63)⇥ 10�11

, (1.1)

by around 3.5�. In the near future, the new Fermilab E989 experiment [2] will be able to
reduce the experimental uncertainty by a factor 4, and the E34 experiment at J-PARC [3]
will provide an important cross check, see ref. [4] for a comparison of the experimental
methods. Therefore, the theoretical calculation of aµ needs to be improved accordingly.

The uncertainty of the SM prediction mainly stems from hadronic contributions, such
as hadronic vacuum polarization (HVP), see figure 1 (a), and HLbL scattering, see fig-
ure 1 (b). Since the HVP contribution can be systematically calculated with a data-driven
dispersive approach [5–9], lattice QCD [10–16], and potentially be accessed independently
by the proposed MUonE experiment [17, 18], which aims to measure the space-like fine-
structure constant ↵(t) in elastic electron–muon scattering, the HLbL contribution may end
up dominating the theoretical error.1

Apart from lattice QCD [27–29], recent data-driven approaches towards HLbL scat-
tering are again rooted in dispersion theory, either for the HLbL tensor [30–35], the Pauli

1Note that higher-order insertions of HVP [5, 19, 20] and HLbL [21] are already under sufficient control,
as are hadronic corrections in the anomalous magnetic moment of the electron, where recently a 2.5�

tension between the direct measurement [22] and the SM prediction [23] using the fine-structure constant
from Cs interferometry [24] emerged [25, 26].

– 1 –

Contribution PdRV(09) [471] N/JN(09) [472, 573] J(17) [27] Our estimate

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S -wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � � �
� 1(3)tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 15: Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009 and a recent update with our estimate. Legend:
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

in Table 15.42 While the central values are all quite close to each other (the largest discrepancy is with the Glasgow
consensus, which, however, includes a large part of the short-distance contribution in the pseudoscalar poles) and all
compatible within errors, the largest improvement is in the uncertainty, which has been reduced by a factor 6 to 3.

The lower part of the table contains the remaining contributions, which still su↵er from significant uncertainties,
further separated into the contribution from light quarks as well as the c-loop. For these a comparison among di↵erent
evaluations is more di�cult, because model dependence is still a↵ecting all contributions (with the exception of the
short-distance contribution evaluated here). It is in this second part of the table that future progress will have to
happen.

We have described above how we obtained our final error estimate. Just for comparison, in PdRV [471] all errors
have been added in quadrature, in N/JN [472, 573] all errors have been added linearly, and in J [27] the errors have been
added in quadrature and then multiplied by a factor 2 to account for possible model uncertainties so far unaccounted
for.

We also briefly comment on the numbers in the recent review by Danilkin, Redmer, and Vanderhaeghen [626]. The
main di↵erence is their estimate of the pseudoscalar-pole contribution, 84(4) ⇥ 10�11, lower than our value by about
2.5�, which is incompatible with what we know about this contribution as explained in Sec. 4.4. The smaller value for
the PS-poles is compensated by the quark-loop contribution, 20(4) ⇥ 10�11, which is a bit larger than our estimate of
the short-distance contribution, leading to a central value, 87(13) ⇥ 10�11, very close to ours. The errors in Ref. [626]
are added linearly, but in particular the uncertainties for the axial-vectors and the short-distance contribution are much
smaller than ours, which is the main reason for their rather small total uncertainty.

The comparison discussed here clearly shows that there has been significant progress since the time of the Glasgow
consensus. The development of a more systematic approach to the calculation of the HLbL contribution has led to
improved estimates of several of the underlying contributions. The shifts in the central values are relatively moderate,
never larger than two sigmas with respect to older estimates, but the overall shift is quite significant and in the negative
direction, thus increasing the discrepancy with the measured value. Even more important than the shift in the central
value is our ability to make better uncertainty estimates. In some cases these have been drastically reduced with
respect to the time of the Glasgow consensus, but in some others a better theoretical understanding of the formalism
has led to a more cautious attitude. The upshot is that even taking a conservative approach we could bring the total
uncertainty down to about 20% of the central value and the prospects for an even further reduction in the coming
years, towards the 10% goal, are very good as will be sketched in the next subsection.

42To make a meaningful comparison, since the largest contribution among the scalars is due to the �/ f0(500), which is treated as a ⇡⇡ rescattering
e↵ect here, we have considered the contribution of the scalars of earlier evaluations in the line labeled “S -wave ⇡⇡ rescattering.” This is indeed
justified for the scalar contribution �6.8(2.0) ⇥ 10�11 in the ENJL model from Ref. [484], as confirmed in Ref. [666]. The �/ f0(500) is also
responsible for 50–80% of the value �6.0(1.2) ⇥ 10�11 from Ref. [27], depending on the mixing.
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and large parts of the two-pion intermediate states, both of which rely on data-driven approaches and are under good
control; (2) the model-dependent estimates for the sum of scalar, tensor, and axial-vector contributions, as well as
the impact of short-distance constraints; all of these still su↵er from significant uncertainties, which in the total have
been added linearly; (3) the c-quark contribution, which can be estimated using perturbative QCD, with a conservative
uncertainty estimate in view of the low scale and potential nonperturbative e↵ects. The final estimates for HLbL from
Table 15 (mainly based on Refs. [18–30] and, in addition to e+e� ! hadrons cross sections, the experimental input
from Refs. [90–109]) and HLbL at NLO [31] from Eq. (4.91) read as follows:

aHLbL
µ = (69.3(4.1) + 20(19) + 3(1)) ⇥ 10�11

= 92(19) ⇥ 10�11 , (8.7)

aHLbL, NLO
µ = 2(1) ⇥ 10�11 , (8.8)

where the first line gives the three pieces in the same order as discussed above and the total in the second line is
obtained by adding the central values of the three contributions and combining the errors in quadrature. The final
error is about 20% and is completely dominated by the model estimates of a numerically subdominant part of the
total.

The lattice determination of HLbL scattering is reviewed in Sec. 5. The lattice methodology for this quantity has
advanced significantly in the last years [110–116] and has now reached a mature stage, resulting in a calculation [32]
with reliable estimates of both statistical and systematic uncertainties (Eq. (5.49)):

aHLbL
µ = 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (8.9)

There have been extensive checks between di↵erent groups working on the lattice HLbL as well as internal checks of
the calculations such as the regression against the leptonic loop or pion-pole contributions. These checks are explained
in detail in Sec. 5.

To obtain a recommendation for the full SM prediction we proceed as follows: for HLbL scattering, there is
excellent agreement between phenomenology and lattice QCD, to the extent that it is justified to consider a weighted
average. Taking into account that the lattice-QCD value does not include the c-quark loop, we first average the
light-quark contribution and add the c quark as estimated phenomenologically in the end. This produces

aHLbL
µ (phenomenology + lattice QCD) = 90(17) ⇥ 10�11 , (8.10)

and, using Eq. (8.8),

aHLbL
µ (phenomenology + lattice QCD) + aHLbL, NLO

µ = 92(18) ⇥ 10�11 . (8.11)

For HVP, the current uncertainties in lattice calculations are too large to perform a similar average and the future
confrontation of phenomenology and lattice QCD crucially depends on the outcome of forthcoming lattice studies.
For this reason, we adopt Eq. (8.3) as our final estimate, emphasizing that the uncertainty estimate already accounts
for the tensions in the e+e� data base. Combined with the QED and EW contributions, we obtain

aSM
µ = aQED

µ + aEW
µ + aHVP, LO

µ + aHVP, NLO
µ + aHVP, NNLO

µ + aHLbL
µ + aHLbL, NLO

µ

= 116 591 810(43) ⇥ 10�11 . (8.12)

This value is mainly based on Refs. [2–8, 18–24, 31–36], which should be cited in any work that uses or quotes
Eq. (8.12). It di↵ers from the Brookhaven measurement [1]

aexp
µ = 116 592 089(63) ⇥ 10�11 , (8.13)

where the central value is adjusted to the latest value of � = µµ/µp = 3.183345142(71) [751], by

�aµ := aexp
µ � aSM

µ = 279(76) ⇥ 10�11 , (8.14)
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.

4

Data-driven and lattice QCD predictions are consistent

⟹ 10% uncertainty feasible (by 2025) [Snowmass ’21]

10

which satisfies (8) exactly, much like CCGDI/HW2, but
by neglecting any contribution to ⇧̄1 beyond the pion
pole in g � 2 kinematics, gives instead a much larger
contribution.

The breakdown of the contribution to aµ in di↵er-
ent integration regions shows that there is in general a
rather good agreement (with a few exceptions) between
the Regge and the CCDGI/HW2 models. In particular
in the pion/a1 channel, the agreement is very good in
the “asymptotic” region, the first row in the table. At
low q2 there are di↵erences, but these are expected, be-
cause the two models describe di↵erent degrees of free-
dom there. The situation is similar in the ⌘/f1 + ⌘0/f 0

1

channels, where again the largest di↵erences occur in
the low-energy region. However, there are also some
non-negligible di↵erences even in the large-Q2

i region,
which might be related to the fact that the HW2 mod-
els do not fully saturate the SDC2 [44]. Overall, the PS
Regge and also the hQCD models are largely compat-
ible with the LP interpolants, which are independent
of the choice of degrees of freedom. As far as the MV
model is concerned, all regions where at least one of the
Qi is large are in reasonable agreement with the other
two models, but it is the region where all Qi are small
where the MV model estimates significantly larger ef-
fects; as expected, since in this region the truncation of
the non-factorizable contributions, see Sect. 5.2, cannot
be justified. The table also shows that the kinematic re-
gion Q2

1 ⇠ Q2
2 � Q2

3, Q
2
1,2 > Qmatch, all contained in

part of the first row and in the second row, provides a
small contribution to the total. This is particularly true
for the MV model.

Another way to visualize the impact on aµ of the
di↵erent kinematic regions is to plot the contribution
to aµ as a function of a lower cuto↵ Qmin < Qi, as
shown in Fig. 5. The plot shows again that although
there are di↵erences in the Qi dependence between the
Regge and the hQCD models, these are not so sig-
nificant with respect to aµ and lead to a similar fi-
nal number. The MV model, on the other hand, only
comes close to the other two for large values of Qmin,
whereas it estimates a much larger e↵ect in the region
of low Qi. Finally, we have also shown the result ob-
tained with the interpolants by LP, which is compatible
with both the Regge as well as the hQCD models, even
though somewhat lower for low-Q2. This may have to
do with the fact that it does not include any explicit res-
onances and lacks the corresponding low-Q2 enhance-
ments. However, as explained in [45], the method of
interpolants can be generalized to explicitly include res-
onance contributions, once their model-independent de-
scription becomes available (and might o↵er a valuable
alternative to the resummation of a tower of states).
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Fig. 5: Contribution to aµ for Qi � Qmatch: the longi-
tudinal part of the massless perturbative QCD quark
loop (dotted red), the MV model (dot-dashed green),
the CCDGI model (dashed and dotted-dashed ma-
genta), the LR HW2 model (dashed and dotted-dashed
turquoise), the LP model (solid black), and our model
(solid blue). The blue point indicates the final value
in (30).

For axial-vector states this is not yet the case, however:
a phenomenologically driven evaluation seems within
reach at least for the f1 contribution [72], but it will re-
quire a detailed understanding of sum-rule ambiguities.

The present numerical comparison seems to be at
odds with the conclusions drawn by CCDGI [44], who
claim to be in agreement with the MV estimate. They
reach this conclusion on the basis of two comparisons: a
detailed one at the level of the hV V Ai correlation func-
tion and one at the level of the total contribution to
aµ. The first one has been discussed above and indeed
shows that the two models agree very well. However,
the comparison of the contribution to aµ at the level of
the total without separation of the poles of the ground-
state pseudoscalars risks to be misleading: the total
number is dominated by the poles due to the Goldstone
bosons and even small di↵erences in the evaluation of
the latter (necessary because of our improved under-
standing of their TFF) may obscure the comparison
for the remainder. LR [43], whose model coincides al-
gebraically with that of CCDGI and numerically di↵ers
very little, make the comparison after first subtracting
the Goldstone-boson poles and come to the same con-
clusion we reached here.

Bastian Kubis
(g-2 school 2021)

https://indico.mitp.uni-mainz.de/event/208/contributions/3120/attachments/2652/2981/Kubis_g-2-school.pdf
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Low-energy observables measured to high 
precision provide stringent tests of the 
Standard Model (SM) of particle physics 

Uncertainty of the SM prediction is 
dominated by hadronic corrections

QCD is non-perturbative at low energies, 
therefore we use dispersion relations, lattice 
QCD and effective field theories

Leading uncertainty presently comes from hadronic vacuum polarization 

Soon hadronic light-by-light scattering will be leading uncertainty

Pseudoscalar-pole contributions are the leading HLbL contributions: 
aPS

μ = 93.8(4.0) × 10−11

Short-distance constraints are important for a model-independent evaluation, 
because mixed- and high-energy regions cannot be constrained from data
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VACUUM POLARIZATION

10

E.m. gauge invariance                                                    
→ only one scalar amplitude 

qμΠμν = 0, qνΠμν = 0
Πμν(q) = [q2gμν − qμqν] Π(q2)

Dressed photon propagator as Dyson series of self–energy insertions:

Δ̃μν(q) = Δμν(q) + Δμρ(q)iΠρσΔσν(q) + … =
Δμν(q)

1 − Π(q2)
q2→ 0= Δμν(q)

Analyticity in the  plane allows to write a once-subtracted dispersion 
relation (Cauchy’s theorem):

s = q2

 Π(s) − Π(0) =
s
π ∫

∞

s0

ds′￼
Im Π(s′￼)
s′￼(s′￼− s)
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Cauchy integral formula                                  

with closed contour  inside analyticity domain avoiding branch cut on real axis:

f(z) =
1

2πi ∮𝒞
dζ

f(ζ)
ζ − z

= IR(z) + I+(z) + I−(z) + Ir(z)

𝒞

IR(z) =
1

2π ∫
2π−a

a
dϕ eiϕ f(Reiϕ)

eiϕ − z /R
R→∞= 0

Ir(z) = −
r

2π ∫
3π/2

π/2
dϕ eiϕ f(ω0 + reiϕ)

ω0 + reiϕ − z
r→0= 0

I±(z) = ± 1
2πi ∫

R

ω0

dζ
f(ζ ± ir)

ζ ± ir − z

DISPERSION RELATION
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Applying Schwarz reflection principle: f*(z) = f(z*)

f(z) = lim
r→0

1
2πi ∫

∞

ω0

dζ [ f(ζ + ir)
ζ + ir − z

−
f +(ζ + ir)
ζ − ir − z ] =

1
π ∫

∞

ω0

dζ
Im f(ζ)
ζ − z

DISPERSION RELATION
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IR

Ir

I−

I+
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IR

Ir

I−

I+

We can reconstruct the function in the entire complex plane from an integral of 
its imaginary part associated with the branch cut(s): 

Re f(ω) = lim
γ→0

1
π ∫

∞

ω0

dζ
(ζ − ω) f(ζ)

(ζ − ω)2 + γ2
=

1
π

𝒫∫
∞

ω0

dζ
Im f(ζ)
ζ − ω
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I−

I+

We can reconstruct the function in the entire complex plane from an integral of 
its imaginary part associated with the branch cut(s): 

Re f(ω) = lim
γ→0

1
π ∫

∞

ω0

dζ
(ζ − ω) f(ζ)

(ζ − ω)2 + γ2
=

1
π

𝒫∫
∞

ω0

dζ
Im f(ζ)
ζ − ω

Im f(ω + iγ) =
1
π ∫

∞

ω0

dζ
γ Imf(ζ)

(ζ − ω)2 + γ2
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Unitarity (optical theorem) relates discontinuity across the branch cut to 
experimental observable:

 


with  where the QED part can be calculated exactly

Im Πhad(s) = −
α
3s

σe+e−→had(s) = Im Πμ+μ−(s) Rhad
γ (s)

Rhad
γ (s) =

σe+e−→γ*→had

σe+e−→γ*→μ+μ−

Keshavarzi et al. (2018)
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HVP is calculated with a simple data-driven dispersive approach: 

No conceptual problems

Systematic improvements possible

Tensions in data-base, in particular, channel (cf. CMD-3, KLOE vs. BaBar)π+π−

F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017) 
M. Davier, Nucl. Part. Phys. Proc. 287-288, 70 (2017)

(a) (b)

HVPTwo Roads:

• To R(s):

• Method: dispersion relation.

• Based on Im⇧had(s > 0).

• input: e+e� ! had data.

F. Jegerlehner, hep-ph/1804.07409

M. Fael Seattle INT-19-74W Sept. 10th 2019 12

aHVP =
α2

3π2 ∫
∞

m2
π

ds
Rhad

γ (s) K(s/m2)
s

Rhad
γ (s) =

σ(e+e− → γ* → hadrons)
σ(e+e− → γ* → μ+μ−)

K(s/m2) = ∫
1

0
dx

x2(1 − x)
x2 + (1 − x) s/m2

e+ hadrons

e-

e+ hadrons

e- γ

Figure 1: The LO Feynman diagrams for the annihilation processes e+e� ! hadrons (left) and e+e� ! � + hadrons with ISR (right).

The remainder of this section is organized as follows. In Sec. 2.2, the di↵erent experiments and methods, direct
scan and radiative return, are discussed. The hadronic cross section data is reviewed, with emphasis on the most
important channels and comparisons of data from di↵erent experiments for the same channel. This section also
includes a short discussion of radiative corrections and Monte Carlo generators, and of the possible use of spectral-
function data from hadronic ⌧ decays. Section 2.3 contains short reviews of the most popular global analyses for the
HVP contributions to aµ. It also includes a discussion of additional constraints that can be used to further improve
the two-pion channel, a comparison of the di↵erent evaluations, and a conservative merging of the main data-driven
results. Section 2.4 discusses prospects for further improvements of the data-driven determination of aHVP

µ and Sec. 2.5
contains a short summary and the conclusions for this part.

2.2. Hadronic data
The dispersive approach for computing HVP contributions to the muon anomalous magnetic moment is based on

the availability of e+e� annihilation measurements of hadronic cross sections at energies below a few GeV. In this
section, we present a review of this data, where a wealth of precision results has been obtained in recent years.

2.2.1. Experimental approaches
The scan method. Until recently, measurements of annihilation cross sections were done by taking data at fixed CM
energies, taking advantage of the good beam energy resolution of e+e� colliders. Then the full accessible range was
scanned at discrete energy points. At each point the cross section for the process e+e� ! X is directly obtained
through

�X =
NX

✏X(1 + �)Lee
, (2.5)

where NX is the observed number of X events, ✏X is the e�ciency depending on the detector acceptance and the event
selection cuts, (1+�) the radiative correction, and Lee the integrated e+e� luminosity obtained from registered leptonic
events with known QED cross sections (e+e� ! e+e�, µ+µ�, or ��). All quantities depend on the CM energy

p
s of

the scan point. The radiative correction takes into account the loss of events by ISR causing them to be rejected by
the selection, which usually imposes constraints on energy-momentum balance.

At LO the process is described by the Feynman diagram shown in Fig. 1. The beauty of e+e� annihilation is
its simplicity due to the purely leptonic initial state governed by QED and the exchange of a highly virtual photon
coupled to any charged particles (leptons or quarks). Thus strong interaction dynamics can be studied in a very clean
way as quark pairs are created initially out of the QCD vacuum.

The advantages of the scan approach are (i) the well-defined CM energy (mass of the hadronic system), which
applies for both the process being investigated and background, thus limiting the number of sources for the latter,
and (ii) the very good energy resolution, typically ⇠ 10�3 ps, allowing for the study of the line shape of narrow
resonances such as the ! and the �. These good points have some negative counterparts, as data taking has to be
distributed at discrete values, leaving gaps without information, while being limited by the operating range of the
collider as luminosity usually drops steeply at lower energies. The consequence of this fact is that the wide range
of energies necessary for the dispersion integral has to be covered by a number of experiments at di↵erent colliders
of increasing energies. Thus, only for the region from threshold to 2 GeV, three generations of colliders have been
used. An additional complication of this situation is a lack of continuity in detector performance and therefore some
di�culties for evaluating systematic uncertainties in a coherent way.

14
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Prospects for precise predictions of aµ in the SM

Ref. [21] Ref. [22] Difference

⇡+⇡� 507.85(0.83)(3.23)(0.55) 504.23(1.90) 3.62
⇡+⇡�⇡0 46.21(0.40)(1.10)(0.86) 46.63(94) �0.42

⇡+⇡�⇡+⇡� 13.68(0.03)(0.27)(0.14) 13.99(19) �0.31
⇡+⇡�⇡0⇡0 18.03(0.06)(0.48)(0.26) 18.15(74) �0.12
K+K� 23.08(0.20)(0.33)(0.21) 23.00(22) 0.08
KSKL 12.82(0.06)(0.18)(0.15) 13.04(19) �0.22
⇡0� 4.41(0.06)(0.04)(0.07) 4.58(10) �0.17

Sum of the above 626.08(0.95)(3.48)(1.47) 623.62(2.27) 2.46

[1.8, 3.7]GeV (without cc̄) 33.45(71) 34.45(56) �1.00
J/ ,  (2S) 7.76(12) 7.84(19) �0.08
[3.7,1)GeV 17.15(31) 16.95(19) 0.20

Total aHVP, LO
µ 694.0(1.0)(3.5)(1.6)(0.1) (0.7)DV+QCD 692.8(2.4) 1.2

Table 2: Comparison of selected exclusive-mode contributions to aHVP, LO
µ from Refs. [21,

22], for the energy range  1.8GeV, in units of 10�10, see Ref. [6] for details.

Recent developments in the data-driven HVP evaluation that are not yet reflected in the
recommendation from Ref. [6] include the crucial 2⇡ channel (new data from SND [151]
and covariance matrix from BESIII [88]) as well as new data for e+e� ! 3⇡ [152, 153], the
second-largest channel both in absolute value and error, see Table 2. Moreover, unitarity
and analyticity constraints have been analyzed for the ⇡0� [154] and K̄K channels [155].
However, as of now, none of these developments indicate significant changes compared to
the situation described in Ref. [6].

In going forward, new data in the critical 2⇡ channel at the same level of precision
as BaBar [75, 79] and KLOE [73, 76, 80, 97] are required. Such data are expected in
the coming years from BaBar, CMD-3, BESIII, and Belle II, besides new data for other
channels as well. To credibly resolve the existing tensions, especially for the 2⇡ channel,
blind analyses are paramount. Finally, for the success of this program the development of
Monte Carlo generators at NNLO accuracy is necessary, see Refs. [156, 157].

The precision that can be obtained for data-driven evaluations of HVP strongly depends
on whether or not the present tension between the BABAR and KLOE experiments, see
Ref. [6], can be resolved with the upcoming advent of new 2⇡ analyses. If the answer to
that question is affirmative, a precision of 0.3% seems feasible by 2025.

3 Lattice QCD calculations of HVP

HVP can also be computed from first principles in QCD using a non-perturbative lattice
regulator. Calculations are performed in Euclidean space, and the HVP contribution is
computed by a weighted integration of the correlation functions over Euclidean time. In
lattice QCD calculations, the total HVP is obtained from a sum over all quark-flavors and
includes connected and disconnected contractions. Almost all gauge-field ensembles gen-

5

Keshavarzi et al. (2018)
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V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014) 

compare our result with the calculation using the approach
of [16], by evaluating the two-loop integral in Euclidian
space. The contributions of the two types of discontinuities,
their sum and the result of the conventional integration
depending on the pseudoscalar meson mass are shown in
Fig. 4, and their numerical values at the π0 mass are
summarized in Table I. When comparing the result
obtained by the two different methods we find an exact
agreement confirming the consistency of the adopted
procedure.
The suggested approach opens a new alternative strategy

for evaluating the HLbL contributions to the anomalous
magnetic moment of the muon. In contrast to the conven-
tional approach where the integration is carried out after
the analytical continuation to the Euclidian region, the new

approach implies the dispersive evaluation of the loop
integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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FIG. 4 (color online). The value of the HLbL pole contribu-
tion due to the diagram of topology (1) (left panel in Fig. 3) to
aμ scaled by factor of 4πM3=ðe2ΓγγÞ depending on the mass of
the pseudoscalar meson, with Γγγ the two-photon decay width
of the pseudoscalar meson. The blue dashed (red dotted) curve
represents the contribution of the two (three) particle cuts.
Their sum is denoted by the black dash-dotted curve. The result
of the direct evaluation of the two-loop integral is illustrated by
the pink solid curve.

TABLE I. The contributions to aμ (in units 10−10) of two-
particle (2p) and three-particle (3p) cuts for the two topologies
(see Fig. 3) appearing in the pole approximation compared to the
results of the conventional two-loop integration of [16]. Note that
total ¼ 2 × ð1Þ þ ð2Þ.

2p-cut 3p-cut Total Direct

(1) 4.91 −2.14 2.77 2.77
(2) −7.40 7.56 0.16 0.16
Total 2.42 3.28 5.70 5.70

FIG. 3. The two topologies of the HLbL contribution to aμ in
the pole approximation and examples of the two-particle
(dashed) and three-particle (dotted line) cuts for the first
topology (left panel). The wavy lines stand for photons,
whereas the double-dashed (double-solid) lines stand for
pseudoscalar (vector) meson poles.

       

FIG. 2. Unitarity diagrams contributing to the imaginary part
of the vertex function. The cut indicates the on-shell inter-
mediate state.
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dispersive formula for the e.m. vertex function:
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integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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dispersive formula for the e.m. vertex function:

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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compare our result with the calculation using the approach
of [16], by evaluating the two-loop integral in Euclidian
space. The contributions of the two types of discontinuities,
their sum and the result of the conventional integration
depending on the pseudoscalar meson mass are shown in
Fig. 4, and their numerical values at the π0 mass are
summarized in Table I. When comparing the result
obtained by the two different methods we find an exact
agreement confirming the consistency of the adopted
procedure.
The suggested approach opens a new alternative strategy

for evaluating the HLbL contributions to the anomalous
magnetic moment of the muon. In contrast to the conven-
tional approach where the integration is carried out after
the analytical continuation to the Euclidian region, the new

approach implies the dispersive evaluation of the loop
integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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TABLE I. The contributions to aμ (in units 10−10) of two-
particle (2p) and three-particle (3p) cuts for the two topologies
(see Fig. 3) appearing in the pole approximation compared to the
results of the conventional two-loop integration of [16]. Note that
total ¼ 2 × ð1Þ þ ð2Þ.

2p-cut 3p-cut Total Direct

(1) 4.91 −2.14 2.77 2.77
(2) −7.40 7.56 0.16 0.16
Total 2.42 3.28 5.70 5.70

FIG. 3. The two topologies of the HLbL contribution to aμ in
the pole approximation and examples of the two-particle
(dashed) and three-particle (dotted line) cuts for the first
topology (left panel). The wavy lines stand for photons,
whereas the double-dashed (double-solid) lines stand for
pseudoscalar (vector) meson poles.
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Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −

Fπ0γ∗γ∗
(

−Q21,−Q
2
2
)

Fπ0γ∗γ∗
(

−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −

Fπ0γ∗γ∗
(

−Q21,−Q
2
3
)

Fπ0γ∗γ∗
(

−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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dispersive formula for the 
light-by-light scattering amplitude:

Is there an exact dispersive 
formula which needs simple 

experimental input and treats 
HLbL (and everything else) in 

the same way as HVP? 
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Forward Compton scattering sum rules:

Sum rules are model-independent relations based on very general principles: 

• Dispersion relation (analyticity/causality):  

• Optical theorem (unitarity):

• Crossing symmetry

• Low-energy expansion: charge, anomalous magnetic moment, polarizabilities, …

CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q0) for the photon and p(p0) for the target. The photons can be real, i.e.,
q2 = 0 = q0 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
�⇤ p ! � p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p0 and q = q0. Accordingly, the Mandelstam
invariant t = (q�q0)2 = (p�p0)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS
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Scattering matrix  transforms asymptotic initial into final states 
(well-separated, non-interacting, free particles): 

Scattering amplitude: 

Unitarity relation: 

It follows:         

Forward limit:      

𝒮 = 1 + i𝒯

out⟨p′￼1p′￼2⋯ p1p2⟩in = ⟨p′￼1p′￼2⋯ 𝒮 p1p2⟩

⟨p′￼1p′￼2⋯ 𝒯 p1p2⟩ = (2π)4 δ(4) (p1 + p2 − p′￼1 − p′￼2 − ⋯) 𝒜 (p1, p2 → p′￼1, p′￼2, ⋯)

𝒮𝒮† = 1 ⟶ i (𝒯 − 𝒯†) = − 𝒯†𝒯

i ⟨p′￼1p′￼2 𝒯 − 𝒯† p1p2⟩ = − ⟨p′￼1p′￼2 𝒯†𝒯 p1p2⟩
Im𝒜 (p1, p2 → p1, p2) ∝ σ (p1, p2 → anything)
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IR

Ir

I−

I+

Forward scattering, e.g. forward Compton or light-by-light scattering, should be 
invariant under the interchange of incident and outgoing particles

Crossing symmetry 

Analytic structure is mirrored with respect to imaginary axis:




f(−ω) = ± f(ω)

Re feven(z) =
2
π ∫

∞

ω0

dζ
ζ Im f(ζ)
ζ2 − z2

Re fodd(z) =
2ω
π ∫

∞

ω0

dζ
Im f(ζ)
ζ2 − z2
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Gerasimov—Drell—Hearn sum rule

IGDH =
2π2α
m2

a2 = − 2∫
∞

ν0

dν
σTT(ν)

ν

At the next two orders, one finds the FSP sum rules:

γ0 ¼ −
1

4π2

Z
∞

ν0

dν
ΔσabsðνÞ

ν3
; ð8Þ

γ̄0 ¼ −
1

4π2

Z
∞

ν0

dν
ΔσabsðνÞ

ν5
: ð9Þ

In what follows, we assess the empirical helicity-
difference cross section and evaluate gðνÞ, IGDH, γ0, γ0
from the above integrals.

III. FIT OF THE POLARIZED
PHOTOABSORPTION CROSS SECTION

Webeginwith performing a smooth fit of the experimental
helicity-difference cross section of total photoabsorption on
the proton. The fitting procedure is similar to the one applied
for the unpolarized photoabsorption cross section σabs [4].
The integration domain is divided into three regions:

(i) low energy, ν ∈ ½ν0; ν1Þ;
(ii) medium energy, ν ∈ ½ν1; 2 GeVÞ;
(iii) high energy, ν ∈ ½2 GeV;∞Þ;

where ν0 (≈0.145 GeV) and ν1 (≈0.309 GeV) are thresholds
for the single- and double-pion photoproduction, respec-
tively. A smooth transition between the regions is implied.
In the low-energy region, we use the cross sections

generated by MAID [22] (single-pion production only).
Unfortunately, the MAID analysis does not provide any
indication of its uncertainty. In our error estimate, we
judiciously apply a 2% uncertainty to the MAID values.
In the medium-energy region, a fit to the data from

the MAMI (Mainz) and ELSA (Bonn) experiments of the
GDH and A2 collaborations [8–11] is applied in the form of
a sum of six nonrelativistic Breit-Wigner resonances,

ΔσresðWÞ ¼
X6

i¼1

Ai

1
4Γ

2
i

ðW −MiÞ2 þ 1
4Γ

2
i
; ð10Þ

where W ¼
ffiffiffi
s

p
is the invariant mass of the γp system.

Widths (Γ), masses (M), and couplings (A) are treated as
free fitting parameters. The resulting values are given in
Table II.
In the high-energy region, a function of the following

Regge form is used:

ΔσReggeðWÞ ¼ C1Wp1 þ C2Wp2 : ð11Þ

For W in GeV and the cross section in μb, we use the
following fixed parameters [13]:

C1 ¼ −17.05& 2.85; C2 ¼ 104.7& 14.5;

p1 ¼ −1.16& 0.46; p2 ¼ −3.32& 0.44:

The cross section fitting and the sum rule evaluations
are accomplished with the help of the SCIPY package

TABLE II. Fitted resonances parameters entering Eq. (10).

i Mi (MeV) Γi (MeV) Ai · 14Γ
2
i (nb · GeV2)

1 1210.2 119.3 1047.3
2 1405.0 493.5 −9008.4
3 1460.8 239.8 1964.0
4 1585.5 111.7 −226.9
5 1616.4 360.7 3829.3
6 1752.5 105.0 −103.4

FIG. 1. Fit of experimental data for the helicity-difference cross section of total photoproduction on the proton. The solid curve shows
our fit. The other curves, according to the legend, show the Born contribution (single-pion production on a pointlike proton), as well as
the results of MAID [22] and SAID [25] multipole analyses.

EVALUATION OF THE …. II. SPIN-DEPENDENT … PHYSICAL REVIEW D 94, 034043 (2016)

034043-3

for PYTHON. We used the weighted nonlinear least-
squares optimization procedure of SCIPY’s wrapper around
MINPACK’s LMDIF and LMDER algorithms. The latter imple-
ment the modified Levenberg-Marquardt algorithm [23,24].
The resulting fit of the helicity-difference photoabsorp-

tion cross section is shown in Fig. 1. Also shown is the
Born contribution for the πþnþ π0p photoproduction off a
pointlike proton (with the vanishing anomalous magnetic
moment), as well as the results of MAID [22] and SAID [25]
multipole analyses.

IV. EVALUATION OF THE INTEGRALS

Having obtained the fit of the total photoproduction
cross section, we proceed to the evaluation of the GDH and
FSP sum rules, and ultimately of the forward CS amplitude.
Our results for the sum rule integrals are presented in
Table II, where they can be compared with some of the
previous empirical evaluations, as well as the recent χPT
results.
To estimate the uncertainty of our fits and dispersive

integrals, we compute the covariance matrix of the fitted
parameters. In the medium-energy region, the covariance
matrix is simply obtained based on the experimental
uncertainties of the data points. In the high-energy region,
we make use of the uncertainties for the Regge parameters
from Ref. [13], assuming that these four parameters are
uncorrelated. We then apply the standard, linear error
propagation to find the uncertainty of the dispersive
integrals.
In the low-energy region, where the cross sections are

not fit but obtained from the partial-wave analyses, we
judiciously estimate the systematic error of each of
the photoabsorption cross sections to be 2% of the
magnitude of the unpolarized cross section, σðνÞ. As the
result, the error on ΔσðνÞ is equal to 4% of σðνÞ. This error
is then linearly propagated to the dispersion integrals.
Within the calculated uncertainties, our evaluation

appears to be consistent with the previous ones, as well
as with the GDH sum rule value quoted in the bottom part
of Table II. The discrepancy in the central value of the GDH
integral can be traced back to the fact that our fit at the
Δ-resonance peak happens to lie well below the central
value of the data point; see Fig. 1. In particular, the GDH
Collaboration [11] obtains ð254$ 5$ 12Þ μb in the inter-
val of available data (i.e., 0.2 < ν < 2.9 GeV), while our fit
of the same data yields ð246.4$ 6.8Þ μb.
Table III shows the contributions from each of the three

energy regions. One can clearly see that the high-energy
contribution is negligible for the FSPs. A more detailed
behavior of the running sum rule integrals (functions of
the cutoff—the upper integration bound) can be seen in
Fig. 2. One can see the good convergence properties of all
the integrals. It is interesting to observe the significant
cancellations between the contribution below and above
0.2 GeV.

We note that the main contribution to the estimated
uncertainty of the GDH integral comes from the high-
energy Regge behavior, which is possibly both due to the
fact that parameters seem to be not well “fixed” and
because we have used a simplified covariance matrix
estimation for these parameters. As for the higher-order
sum rules, it appears that the main contribution to the
uncertainty comes from our assumption about the system-
atic uncertainty of the partial-wave analyses (low-energy
region).
We next evaluate the entire spin-dependent amplitude

gðνÞ. In order to improve on the accuracy, we use the
subtracted dispersion relation:

Re gðνÞ ¼ −
ακ2p
2M2

p
ν −

ν3

4π2
—
Z

∞

ν0

dν0
Δσabsðν0Þ
ðν02 − ν2Þν0

: ð12Þ

The only difference with the unsubtracted one, Eq. (6), is
accuracy. Indeed, the subtraction replaces the value of the
GDH integral (see “This work” in Table II) by the much
more accurate GDH sum rule value (next row) and leads to
the smaller uncertainty.
The remaining integral in Eq. (12) converges very fast in

the considered energy range. The resulting amplitude is
plotted in Fig. 3. The upper panel shows the real and

FIG. 2. The GDH and FSP integrals as a function of the upper
integration bound. Bands represent estimated errors. Asymptotic
values of the integrals are displayed on the right and marked with
colored triangles.

TABLE III. Contributions to the GDH and FSP integrals by
regions.

Region
Sum Rule Low energy Medium energy High energy

IGDH (μb) 43.6$ 6.0 175.7$ 3.7 −14.8$ 19.9
γ0 (10−6 fm4) 3.6$ 10.3 −96.5$ 2.0 ð2$ 7Þ × 10−2

γ̄0 (10−6 fm6) 77.1$ 8.2 −28.7$ 0.6 ð2$ 36Þ × 10−5

GRYNIUK, HAGELSTEIN, and PASCALUTSA PHYSICAL REVIEW D 94, 034043 (2016)

034043-4

ap ≈ 1.7929 and 
IGDH= 204.784481 𝜇b [CODATA]

𝛾 + p ➔   
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Gerasimov—Drell—Hearn sum rule GDH sum rule for the muon:
• Huge cancelation requires 

measurements with incredible accuracy
‣ l.h.s.: HVP starts at ,            

IGDH starts at 
‣ r.h.s.: hadronic photo-production 

cross section starts at 

𝒪(α2)
𝒪(α5)

𝒪(α3)

a𝜇 ≈ 0.0011659209(6) [BNL]

IGDH =
2π2α
m2

a2 = − 2∫
∞

ν0

dν
σTT(ν)

ν

At the next two orders, one finds the FSP sum rules:
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In what follows, we assess the empirical helicity-
difference cross section and evaluate gðνÞ, IGDH, γ0, γ0
from the above integrals.
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tively. A smooth transition between the regions is implied.
In the low-energy region, we use the cross sections

generated by MAID [22] (single-pion production only).
Unfortunately, the MAID analysis does not provide any
indication of its uncertainty. In our error estimate, we
judiciously apply a 2% uncertainty to the MAID values.
In the medium-energy region, a fit to the data from
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is the invariant mass of the γp system.
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Regge form is used:
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For W in GeV and the cross section in μb, we use the
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for PYTHON. We used the weighted nonlinear least-
squares optimization procedure of SCIPY’s wrapper around
MINPACK’s LMDIF and LMDER algorithms. The latter imple-
ment the modified Levenberg-Marquardt algorithm [23,24].
The resulting fit of the helicity-difference photoabsorp-

tion cross section is shown in Fig. 1. Also shown is the
Born contribution for the πþnþ π0p photoproduction off a
pointlike proton (with the vanishing anomalous magnetic
moment), as well as the results of MAID [22] and SAID [25]
multipole analyses.

IV. EVALUATION OF THE INTEGRALS

Having obtained the fit of the total photoproduction
cross section, we proceed to the evaluation of the GDH and
FSP sum rules, and ultimately of the forward CS amplitude.
Our results for the sum rule integrals are presented in
Table II, where they can be compared with some of the
previous empirical evaluations, as well as the recent χPT
results.
To estimate the uncertainty of our fits and dispersive

integrals, we compute the covariance matrix of the fitted
parameters. In the medium-energy region, the covariance
matrix is simply obtained based on the experimental
uncertainties of the data points. In the high-energy region,
we make use of the uncertainties for the Regge parameters
from Ref. [13], assuming that these four parameters are
uncorrelated. We then apply the standard, linear error
propagation to find the uncertainty of the dispersive
integrals.
In the low-energy region, where the cross sections are

not fit but obtained from the partial-wave analyses, we
judiciously estimate the systematic error of each of
the photoabsorption cross sections to be 2% of the
magnitude of the unpolarized cross section, σðνÞ. As the
result, the error on ΔσðνÞ is equal to 4% of σðνÞ. This error
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appears to be consistent with the previous ones, as well
as with the GDH sum rule value quoted in the bottom part
of Table II. The discrepancy in the central value of the GDH
integral can be traced back to the fact that our fit at the
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Table III shows the contributions from each of the three

energy regions. One can clearly see that the high-energy
contribution is negligible for the FSPs. A more detailed
behavior of the running sum rule integrals (functions of
the cutoff—the upper integration bound) can be seen in
Fig. 2. One can see the good convergence properties of all
the integrals. It is interesting to observe the significant
cancellations between the contribution below and above
0.2 GeV.

We note that the main contribution to the estimated
uncertainty of the GDH integral comes from the high-
energy Regge behavior, which is possibly both due to the
fact that parameters seem to be not well “fixed” and
because we have used a simplified covariance matrix
estimation for these parameters. As for the higher-order
sum rules, it appears that the main contribution to the
uncertainty comes from our assumption about the system-
atic uncertainty of the partial-wave analyses (low-energy
region).
We next evaluate the entire spin-dependent amplitude

gðνÞ. In order to improve on the accuracy, we use the
subtracted dispersion relation:

Re gðνÞ ¼ −
ακ2p
2M2

p
ν −

ν3

4π2
—
Z

∞

ν0

dν0
Δσabsðν0Þ
ðν02 − ν2Þν0

: ð12Þ

The only difference with the unsubtracted one, Eq. (6), is
accuracy. Indeed, the subtraction replaces the value of the
GDH integral (see “This work” in Table II) by the much
more accurate GDH sum rule value (next row) and leads to
the smaller uncertainty.
The remaining integral in Eq. (12) converges very fast in

the considered energy range. The resulting amplitude is
plotted in Fig. 3. The upper panel shows the real and

FIG. 2. The GDH and FSP integrals as a function of the upper
integration bound. Bands represent estimated errors. Asymptotic
values of the integrals are displayed on the right and marked with
colored triangles.

TABLE III. Contributions to the GDH and FSP integrals by
regions.

Region
Sum Rule Low energy Medium energy High energy

IGDH (μb) 43.6$ 6.0 175.7$ 3.7 −14.8$ 19.9
γ0 (10−6 fm4) 3.6$ 10.3 −96.5$ 2.0 ð2$ 7Þ × 10−2

γ̄0 (10−6 fm6) 77.1$ 8.2 −28.7$ 0.6 ð2$ 36Þ × 10−5

GRYNIUK, HAGELSTEIN, and PASCALUTSA PHYSICAL REVIEW D 94, 034043 (2016)

034043-4

ap ≈ 1.7929 and 
IGDH= 204.784481 𝜇b [CODATA]

𝛾 + p ➔   
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Burkhardt—Cottingham 
sum rule (1970)

Gerasimov—Drell—Hearn 
sum rule (1966)

Some sum rules for Compton scattering (CS) off a spin-1/2 particle:  
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Schwinger sum rule (1975)
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Burkhardt—Cottingham 
sum rule (1970)

Gerasimov—Drell—Hearn 
sum rule (1966)

Some sum rules for Compton scattering (CS) off a spin-1/2 particle:  
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THE SCHWINGER SUM RULE (1975)

23

muon mass m

photon lab-frame energy 𝜈  

and virtuality Q2 = -q2

photo-absorption threshold ν0
fine-structure  

constant 𝛼 ≈ 1/137
longitudinal-transverse 

photo-absorption  
cross section σLT

J. S. Schwinger, Proc. Nat. Acad. Sci. 72, 1 (1975); ibid. 72, 1559 (1975) [Acta Phys. Austriaca Suppl. 14, 471 (1975)]. 
A. M. Harun ar-Rashid, Nuovo Cim. A 33, 447 (1976).
FH and V. Pascalutsa, PRL 120 (2018) 072002 and PoS CD2018 (2019) 066.

anomalous  
magnetic moment  
(a.m.m.) 
a=½(g−2)μ
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THE SCHWINGER SUM RULE (1975)

23

muon mass m

photon lab-frame energy 𝜈  

and virtuality Q2 = -q2

photo-absorption threshold ν0
fine-structure  

constant 𝛼 ≈ 1/137
longitudinal-transverse 

photo-absorption  
cross section σLT

J. S. Schwinger, Proc. Nat. Acad. Sci. 72, 1 (1975); ibid. 72, 1559 (1975) [Acta Phys. Austriaca Suppl. 14, 471 (1975)]. 
A. M. Harun ar-Rashid, Nuovo Cim. A 33, 447 (1976).
FH and V. Pascalutsa, PRL 120 (2018) 072002 and PoS CD2018 (2019) 066.

anomalous  
magnetic moment  
(a.m.m.) 
a=½(g−2)μ

γ∗

N

X

inelastic cross section

→ 𝜇𝛾, 𝜇𝛾𝛾, 𝜇π0, 𝜇𝛾π0, …

𝜇

Linear relation between g-2 and a single 
experimental observable — the photo-
absorption cross section
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THE SCHWINGER SUM RULE (1975)

23

muon mass m

photon lab-frame energy 𝜈  

and virtuality Q2 = -q2

photo-absorption threshold ν0
fine-structure  

constant 𝛼 ≈ 1/137
longitudinal-transverse 

photo-absorption  
cross section σLT

J. S. Schwinger, Proc. Nat. Acad. Sci. 72, 1 (1975); ibid. 72, 1559 (1975) [Acta Phys. Austriaca Suppl. 14, 471 (1975)]. 
A. M. Harun ar-Rashid, Nuovo Cim. A 33, 447 (1976).
FH and V. Pascalutsa, PRL 120 (2018) 072002 and PoS CD2018 (2019) 066.

anomalous  
magnetic moment  
(a.m.m.) 
a=½(g−2)μ

γ∗

N

X

inelastic cross section

→ 𝜇𝛾, 𝜇𝛾𝛾, 𝜇π0, 𝜇𝛾π0, …

𝜇

Linear relation between g-2 and a single 
experimental observable — the photo-
absorption cross section

Puts all contributions to  on the same 
footing: HVP, HLbL, …, QED

aμ



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024

LONGITUDINAL-TRANSVERSE CROSS SECTION

24

Example: tree-level QED Compton scattering cross section

with conserved helicity:
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H=𝜆’𝛾-𝜆’𝜇=𝜆𝛾-𝜆𝜇
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Example: tree-level QED Compton scattering cross section

with conserved helicity:
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longitudinal-transverse photo-absorption cross section:
𝛾*(𝜆𝛾=0) + 𝜇(𝜆𝜇=-1/2) → 𝛾(𝜆’𝛾=1) + 𝜇(𝜆’𝜇=1/2)

𝜆𝛾=0

𝜆𝜇=-1/2

𝜆’𝛾=1

𝜆’𝜇=1/2
spin flip
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THE SCHWINGER TERM

25

Input: longitudinal-transverse photo-absorption cross section

Schwinger sum rule:

tree-level QED 
Compton scattering

q’2 =0

F2(0)=a a(1) = 𝛼/2πa(0)=0
Schwinger term —  
the leading QED result

q2 = -Q2
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HVP — STANDARD FORMULA

26

(a) (b)

Hadronic vacuum polarization: 2 Data-driven 
approaches based on dispersion theory          

A) Standard Formula 

B) Schwinger Sum Rule

decay rate of a virtual timelike  
photon into hadrons

photon selfenergy

aHVP =
↵

⇡2

Z 1

4m2
⇡

ds

s
Im⇧had(s)

Z
1

0

dx
x2(1� x)

x2 + (1� x)(s/m2)
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Im⇧had(s) =
s

4⇡↵
�(�⇤ ! anything) =

↵

3
Rhad

� (s)
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Two Roads:

• To R(s):

• Method: dispersion relation.

• Based on Im⇧had(s > 0).

• input: e+e� ! had data.

F. Jegerlehner, hep-ph/1804.07409

M. Fael Seattle INT-19-74W Sept. 10th 2019 12
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�(�µ ! µX) =
1

⇡

Z 1

4m2
⇡

dM2
X

M2
X

�(�µ ! �⇤µ) Im⇧X(M2
X)
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HVP — SCHWINGER SUM RULE

27

hadrons

+ crossed diagram

q2 = -Q2

Cross section of hadron production through timelike Compton scattering:

factories into: 

q’2 = Mx2
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HVP — SCHWINGER SUM RULE

27

hadrons

+ crossed diagram

q2 = -Q2

Cross section of hadron production through timelike Compton scattering:

timelike  

Compton scattering

factories into: 

q’2 = Mx2

Timelike Compton scattering cross section:

� = (1/2s)
p

[s� (m+MX)2] [s� (m�MX)2], � = (s+m2 �M2
X)/2s, s = m2 + 2m⌫
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� = (1/2s)
p

[s� (m+MX)2] [s� (m�MX)2], � = (s+m2 �M2
X)/2s, s = m2 + 2m⌫
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⇡
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HVP — SCHWINGER SUM RULE

27

hadrons

+ crossed diagram

q2 = -Q2

Cross section of hadron production through timelike Compton scattering:

timelike  

Compton scattering

 virtual-photon  

decay into hadrons

factories into: 

q’2 = Mx2

Timelike Compton scattering cross section:

� = (1/2s)
p

[s� (m+MX)2] [s� (m�MX)2], � = (s+m2 �M2
X)/2s, s = m2 + 2m⌫

<latexit sha1_base64="MHep6uQmrGbHiMl9xKe7CLK+9Q8="></latexit>

� = (1/2s)
p

[s� (m+MX)2] [s� (m�MX)2], � = (s+m2 �M2
X)/2s, s = m2 + 2m⌫

<latexit sha1_base64="MHep6uQmrGbHiMl9xKe7CLK+9Q8="></latexit>

"
��µ!�⇤µ
LT (⌫, Q2)

Q

#

Q2=0

=
⇡↵2

2m2⌫3

"
� (5s+m2 +M2

X)�+ (s+ 2m2 � 2M2
X) log

� + �

� � �

#

<latexit sha1_base64="Boa7PDgTBpV4BHKufUpGsC5kHL4="></latexit>



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024

a =
m2

⇡2↵

1Z

4m2
⇡

dM2
X

1Z

⌫0

d⌫

"
1

Q

d��µ!µX
LT (⌫, Q2)

dM2
X

#

Q2=0

=
1

⇡

1Z

4m2
⇡

dM2
X

Im⇧had(M2
X)

M2
X

m2

⇡2↵

1Z

⌫0

d⌫

"
��µ!�⇤µ
LT (⌫, Q2)

Q

#

Q2=0
<latexit sha1_base64="KpYu3Zoc9V21F6zjCccOlepesd4="></latexit><latexit sha1_base64="KpYu3Zoc9V21F6zjCccOlepesd4="></latexit><latexit sha1_base64="KpYu3Zoc9V21F6zjCccOlepesd4="></latexit><latexit sha1_base64="KpYu3Zoc9V21F6zjCccOlepesd4="></latexit>

HVP — SCHWINGER SUM RULE

28

(a) (b)

hadrons

HVP from the Schwinger sum rule with the cross section of hadron production 
through timelike Compton scattering:

q2 = -Q2

q’2 = Mx2

+ crossed diagram
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HVP — SCHWINGER SUM RULE
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(a) (b)

hadrons

HVP from the Schwinger sum rule with the cross section of hadron production 
through timelike Compton scattering:

↵

⇡
K(M2

X/m2) ⌘ ↵

⇡

Z 1

0
dx

x2(1� x)

x2 + (1� x)(M2
X/m2)
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kernel function: 

q2 = -Q2

q’2 = Mx2

+ crossed diagram
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HVP — SCHWINGER SUM RULE
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(a) (b)

hadrons

HVP from the Schwinger sum rule with the cross section of hadron production 
through timelike Compton scattering:
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Schwinger sum rule can reproduce the HVP standard formula

q2 = -Q2

q’2 = Mx2

+ crossed diagram
Theory prediction

Anomalous magnetic moment in the SM
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Theory prediction

Anomalous magnetic moment in the SM
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HVP — SCHWINGER SUM RULE
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(a) (b)

hadrons

HVP from the Schwinger sum rule with the cross section of hadron production 
through timelike Compton scattering:

↵

⇡
K(M2

X/m2) ⌘ ↵
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Z 1

0
dx

x2(1� x)

x2 + (1� x)(M2
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Schwinger sum rule can reproduce the HVP standard formula

q2 = -Q2

q’2 = Mx2

+ crossed diagram

for Mx=0, we find K(0)=1/2, and therefore 
the Schwinger term: ϰ(1) = 𝛼/2π 

Theory prediction

Anomalous magnetic moment in the SM
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Sugawara-Kanazawa (SK) theorem:

the contribution of the 
integral of the amplitude 
over the big (semi)circle in 
the complex plane is given 
by the asymptotic value of 
the amplitude

Schwinger sum rule including asymptotic value of the amplitude:

lim
ν→∞

SLT(ν ± iϵ) = SLT(∞ ± iϵ) < ∞ ⟹ lim
|z|→∞

SLT(z) = SLT(∞ + sgn(Im z) iϵ)

aμ = lim
ν→∞

SLT(ν) +
m2

μ

π2α ∫
∞

ν0

dν [ σLT(ν, Q2)
Q ]

Q2→0

SUGAWARA-KANAZAWA THEOREM

29

Re z

SLT(z)

ν0

ν → ∞
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S-K THEOREM —  TOY MODEL EXAMPLE

30

µ µ

γ

S, P, V, A

µ µ
Consider the one-loop contributions of 
neutral scalar (S), pseudoscalar (P), vector (V) 
and axial-vector (A) massive particles to : 

 are associated with the asymptotic values of the Compton amplitude at infinite 
energy: 

Perturbative checks indicate the absence of any sum-rule-violating asymptotic 
constants in a full ultraviolet-complete theory

aμ

ai
μ = Δi +

m2
μ

π2α ∫
∞

ν0

dν [ σi
LT(ν, Q2)

Q ]
Q2→0

ΔS(ν) =
C2

S

8π2
, ΔP(ν) = −

C2
P

8π2
, ΔV(ν) = 0, ΔA(ν) = −

C2
A

8π2 (
2mμ

MA )
2

Δi

Δi ≡ lim
ν→∞

Si
LT(ν)
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S-K THEOREM —  HIGGS & Z BOSON

31

lim
ν→∞

SZ 0

LT(ν, Q = 0) =
[g/4 cos ΘW]2

8π2 (
2mμ

MZ )
2

lim
ν→∞

SH
LT(ν, Q = 0) =

1
8π2 (

gmμ

2MZ cos ΘW )
2

Schwinger sum rule holds for Z+H!

 lim
ν→∞

(SZ0

LT + SH
LT)

Q→0
= 0

γ

µ µ
Z

µ µ

γ

µ µ
H

µ µ

γ∗ γ∗

µ µZ

µ
µ

γ∗ γ∗

µ µZ

µ

2

µ

γ∗ γ∗

µ µµ

Z

γ∗ γ∗

µ µZ

µ µ

µ
µ

γ∗

µ

Zγ∗

µ

Z

µ

γ∗ γ∗

µ µH

µ
µ

γ∗ γ∗

µ µH

µ

2

µ

γ∗ γ∗

µ µµ

H

γ∗ γ∗

µ µH

µ µ

µ
µ

γ∗

µ

Hγ∗

µ

H

µ

CS amplitudes

photoabsorption 

cross sections

asymptotic value
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PHOTOABSORPTION CROSS SECTIONS

32

  Hadron photo-production off the muon

(a) (b)

hadrons

𝜇𝛾 → 𝜇 + hadrons 

𝜇𝛾 → 𝜇𝛾 + hadrons

(a) Timelike Compton scattering

(b) Primakoff effect

𝜇𝛾 → 𝜇𝛾 

𝜇𝛾 → 𝜇𝛾𝛾

  Electromagnetic channels — HLbL contribution to Compton scattering 
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PROOF OF VANISHING PRIMAKOFF CONTR.

33
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PION-EXCHANGE CONTRIBUTION

34

WP-2020: 


Schwinger sum rule: 

aπ0-pole
μ (disp.) = 63.0+2.7

−2.1 × 10−11

aπ0

μ = 68(6) × 10−11

• Main contribution from -photoproduction channel: 


‣ Including off-shell effects,  vertex (Knecht & Nyffeler VMD model)


• Small corrections from electromagnetic channels, e.g.: 


‣ Highly model-dependent calculation

π0 aμπ0−channel
μ = 63(5) × 10−11

π0γγ

aμγ−channel (π0)
μ ≈ 5(3) × 10−11

×

π0
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Vladimir Pascalutsa — Hadronic Contributions to Muon g-2 via Spin Structure Functions — CIPANP —- Indian Wells, CA—  May 30,  2018                

Feasibility of measurement at COMPASS 
as part of MUonE ?
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 cf. The Workshop on  
Evaluation of the Leading Hadronic Contribution 
to the Muon Anomalous Magnetic Moment  
Mainz (Germany), 2 - 5 April 2017
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MUON STRUCTURE FUNCTIONS

36

Muon spin structure functions could be measured in inelastic 
electron-muon scattering
• Polarized electron-muon collisions?
• Fixed-target 𝜇-on-e scattering?

Double-polarized spin asymmetries:
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DISPERSIVE APPROACH TO HLBL 
HLBL more complicated than HVP ⟹ no analogue of the simple HVP formula

37

V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014) 

compare our result with the calculation using the approach
of [16], by evaluating the two-loop integral in Euclidian
space. The contributions of the two types of discontinuities,
their sum and the result of the conventional integration
depending on the pseudoscalar meson mass are shown in
Fig. 4, and their numerical values at the π0 mass are
summarized in Table I. When comparing the result
obtained by the two different methods we find an exact
agreement confirming the consistency of the adopted
procedure.
The suggested approach opens a new alternative strategy

for evaluating the HLbL contributions to the anomalous
magnetic moment of the muon. In contrast to the conven-
tional approach where the integration is carried out after
the analytical continuation to the Euclidian region, the new

approach implies the dispersive evaluation of the loop
integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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FIG. 4 (color online). The value of the HLbL pole contribu-
tion due to the diagram of topology (1) (left panel in Fig. 3) to
aμ scaled by factor of 4πM3=ðe2ΓγγÞ depending on the mass of
the pseudoscalar meson, with Γγγ the two-photon decay width
of the pseudoscalar meson. The blue dashed (red dotted) curve
represents the contribution of the two (three) particle cuts.
Their sum is denoted by the black dash-dotted curve. The result
of the direct evaluation of the two-loop integral is illustrated by
the pink solid curve.

TABLE I. The contributions to aμ (in units 10−10) of two-
particle (2p) and three-particle (3p) cuts for the two topologies
(see Fig. 3) appearing in the pole approximation compared to the
results of the conventional two-loop integration of [16]. Note that
total ¼ 2 × ð1Þ þ ð2Þ.

2p-cut 3p-cut Total Direct

(1) 4.91 −2.14 2.77 2.77
(2) −7.40 7.56 0.16 0.16
Total 2.42 3.28 5.70 5.70

FIG. 3. The two topologies of the HLbL contribution to aμ in
the pole approximation and examples of the two-particle
(dashed) and three-particle (dotted line) cuts for the first
topology (left panel). The wavy lines stand for photons,
whereas the double-dashed (double-solid) lines stand for
pseudoscalar (vector) meson poles.

       

FIG. 2. Unitarity diagrams contributing to the imaginary part
of the vertex function. The cut indicates the on-shell inter-
mediate state.
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dispersive formula for the e.m. vertex function:

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]
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There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by
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where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher
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G. Colangelo, et al., JHEP 1509 (2015) 074

dispersive formula for the 
light-by-light scattering amplitude:

Schwinger sum rule (a dispersive 
formula for Compton scattering):

CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q0) for the photon and p(p0) for the target. The photons can be real, i.e.,
q2 = 0 = q0 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
�⇤ p ! � p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p0 and q = q0. Accordingly, the Mandelstam
invariant t = (q�q0)2 = (p�p0)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS
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HVP VS HLBL 

39

HLbL is suppressed by a factor of  compared to HVPα

HLbL contribution to g-2 has larger relative uncertainty than HVP contribution

presently ~20%, needs to be <10% to meet the FNAL goal

HVP is described by a single function  of a single variableΠ(q2)

Light-by-light 4-point function

Finding suitable “basis" / tensor structures is much more complicated 

Dependence on two Mandelstam variables requires double-spectral 
representations

Had

q1

q2 q3

q4 = q1 + q2 + q3

Data-driven HLbL evaluation 
is more complicated
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HLBL TENSOR

40

HLbL tensor:

with  and 

General Lorentz invariant decomposition consists of 138 scalar functions 

Constraints due to gauge invariance?

Bardeen-Tung-Tarrach (BTT) decomposition:  54 tensor structures  with scalar 
functions free of kinematic singularities / amenable to a dispersive treatment

43 basis tensors (41 helicity amplitudes in ) ⇒ form of singularities follows 

from projection of the BTT decomposition 

Crossing symmetry ⇒ only 7 distinct structures 

Πμνλσ(q1, q2, q3) = − i∫ d4x d4y d4z e−i(q1⋅x+q2⋅y+q3⋅z)⟨0 |T{jμ(x)jν(y)jλ(z)jσ(0)} |0⟩

q1 + q2 + q3 = q4 q2
4 = 0

Πi

d = 4

see Colangelo, Hoferichter, Procura, Stoffer 2014, 2015, 2017 for details
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HLBL CONTRIBUTION TO (g − 2)μ

41

Master formula:

 is the four-dimensional angle between Euclidean momenta

 are known kernel functions

 are scalar amplitudes suitable for dispersive treatment ⇒ imaginary parts related to 

measurable sub-processes
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4 = 0

see Colangelo, Hoferichter, Procura, Stoffer 2014, 2015, 2017 for details
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MODEL DEPENDENCE

43

Model calculations:

Identification of contributions is not unique (off-shell contributions, form factors)

Possible double counting of high-energy contributions (dressed constituent quark-loop 
& mesonic contributions)

I. INTRODUCTION

Authors: Gilberto Colangelo (working group coordinator), Franziska Hagelstein, Andreas
Ny↵eler (working group coordinator), Vladimir Pascalutsa

A. The HLbL contribution to the muon g � 2

One of the largest uncertainties of the Standard Model evaluation of g�2 comes at present
from the hadronic light-by-light (HLbL) scattering contribution depicted on the left-hand
side of fig. 1. Unlike its QED counterpart, this contribution cannot be calculated in pertur-
bation theory, and thus one should rely on either lattice QCD or data-driven evaluations,
similarly to how it is done for the hadronic vacuum polarization (HVP) contribution.

µ
�(p) µ

�(p0)

# k = p
0
� p

=

⇡
0
, ⌘, ⌘

0

+ . . .+

⇡
+

+ . . .+
Exchanges of

other resonances

(f0, a1, f2, . . .)

+

q

+ . . .

FIG. 1. HLbL in the muon g � 2 in model calculations. The blobs on the right-hand side of the
equal sign are form factors that describe the interaction of photons with hadrons.

The HLbL contribution is, however, more complicated than the HVP contribution, be-
cause the light-by-light contributions enter through a four-point function—the light-by-light
scattering amplitude—rather than a two-point function as in the case of vacuum polariza-
tion. To the right-hand side of the equal sign in fig. 1 various contributions to the HLbL
tensor are shown. This picture was used in early model calculations, but it is to a large
extent still valid, though defined more precisely in modern, data-driven approaches as will
be explained here. At low energies, there are exchanges of single mesons, like the light
pseudoscalars ⇡

0
, ⌘, ⌘

0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
the quark-loop), with the light-pseudoscalars starting at order p

6 and the heavier mesons
at order p

8. Since in general the interaction of photons with mesons is described by form
factors (� � ⇢-mixing as in vector meson dominance models), the situation becomes very

4
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Model calculations:

Identification of contributions is not unique (off-shell contributions, form factors)

Possible double counting of high-energy contributions (dressed constituent quark-loop 
& mesonic contributions)

Dispersive approach:

If an amplitude can be reconstructed from its singularities, and these are related by unitarity 
to physical sub-amplitudes obtained by cutting the hadronic blobs in all possible ways and 
taking into account all possible (on-shell) intermediate states, then the whole amplitude can 
be split into a number of contributions clearly identified by the (on-shell) intermediate states. 
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0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
the quark-loop), with the light-pseudoscalars starting at order p

6 and the heavier mesons
at order p

8. Since in general the interaction of photons with mesons is described by form
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0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
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at order p
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Dispersive approaches apply different cuts on LbL amplitude

46

Mandelstam double-spectral representation with two-pion primary cut

• Poles in sub-processes  and crossed sub-process 

• Multi-particle cuts in sub-processes 

γ* γ* → ππ γ* π → γ*π

γ* π → γ*π

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q21,2 =
Σ

3

(

1 −
r
2
cos φ ∓

r
2
√
3 sin φ

)

, Q23 =
Σ

3
(1 + r cosφ) . (7)

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −

Fπ0γ∗γ∗
(

−Q21,−Q
2
2
)

Fπ0γ∗γ∗
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−Q23, 0
)

Q23 + M2π
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π0-pole
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Fπ0γ∗γ∗
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−Q21,−Q
2
3
)

Fπ0γ∗γ∗
(

−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

4
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input: disp. representation of space-like doubly-virtual pion transition form factor 
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,
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The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.
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expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.
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parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
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Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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has a larger error: this result is both compatible with the dispersive estimation and the "no
new physics scenario". This result was not included in the final SM estimation of aµ because
of the large error. [4] Since the completion of the white paper [4], a new lattice result has been
released [23]. Their result

aHVP
µ = 7075(55)⇥ 10�11 , (2.37)

has a much smaller uncertainty and seems to tend toward a no new physics interpretation.
However, this result should be replicated by other studies before any firm conclusion can be
drawn. [23]

2.3.3.2 Hadronic light-by-light contribution

We now discuss the hadronic light-by-light contribution to aSM
µ : see Fig. 2.6b. It is suppressed

by an extra power of ↵ compared to the HVP. It is therefore smaller, but it is also a more
complicated calculation and the uncertainty is non-negligible at the desired accuracy level.

The hadronic content of this contribution is contained in the light-by-light tensor, evaluated
in pure QCD (i.e. with the electromagnetic coupling constant set to 0) [77]

⇧µ⌫��(q1, q2, q3) ⌘ �i

Z
d4xd4yd4ze�i(q1·x+q2·y+q3·z) h0|T

n
jµem(x)j⌫em(y)j�em(z)j�em(0)

o
|0i ,

(2.38)
where jµem(x) = 2

3
u(x)�µu(x) � 1

3
d(x)�µd(x) � 1

3
s(x)�µs(x) is the light quark electromagnetic

current: see Fig. 2.9.

Figure 2.9: Hadronic light-by-light tensor.

A data-driven approach for the hadronic light-by-light tensor is not as evident as for the
case of HVP because the unitary relation for the four-point function (2.38) is significantly more
complicated and does not involve a single experimental quantity.

The first difficulty is that, contrary to HVP, the HLbL tensor has four Lorentz indices. One can
therefore write 138 different Lorentz structures from the four-momenta and the metric tensor [77]

⇧µ⌫�� =
138X

i=1

Lµ⌫��

i
⌅i . (2.39)

However, because of gauge invariance, these structures are not independent. Following the BTT
procedure17, it is possible to write a decomposition involving 54 scalar functions that are free of

17After Bardeen and Tung [78] and Tarrach [79].
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Hadronic light-by-light scattering: data input

e+e� ! e+e�⇡0 �⇡ ! ⇡⇡�⇡ ! ⇡⇡

e+e� ! ⇡0�e+e� ! ⇡0� !,� ! ⇡⇡� e+e� ! ⇡⇡�

⇡⇡ ! ⇡⇡

Pion transition form factor
F⇡0�⇤�⇤

�
q21, q

2
2

� Partial waves for
�⇤�⇤ ! ⇡⇡ e+e� ! e+e�⇡⇡

Pion vector
form factor F V

⇡

Pion vector
form factor F V

⇡

e+e� ! 3⇡ pion polarizabilitiespion polarizabilities �⇡ ! �⇡

!,� ! 3⇡ !,� ! ⇡0�⇤!,� ! ⇡0�⇤
Colangelo, MH, Kubis, Procura, Stoffer 2014

Reconstruction of �⇤�⇤ ! ⇡⇡,⇡0: combine experiment and theory constraints

Need input on �⇤�⇤ matrix elements for as many states as possible

M. Hoferichter (Institute for Theoretical Physics) Recent progress in hadronic light-by-light scattering August 5, 2021 13
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issue experimental input [I] or cross-checks [C]

axials, tensors, higher pseudoscalars �(⇤)�⇤ ! 3⇡, 4⇡, KK̄⇡, ⌘⇡⇡, ⌘0⇡⇡ [I]
missing states inclusive �(⇤)�⇤ ! hadrons at 1–3 GeV [I]
dispersive analysis of ⌘(0) TFFs e+e� ! ⌘⇡+⇡� [I]

⌘0 ! ⇡+⇡�⇡+⇡� [I]
⌘0 ! ⇡+⇡�e+e� [I]
�⇡� ! ⇡�⌘ [C]

dispersive analysis of ⇡0 TFF �⇡! ⇡⇡ [I]
high accuracy Dalitz plot !! ⇡+⇡�⇡0 [C]
e+e� ! ⇡+⇡�⇡0 [C]
!, �! ⇡0l+l� [C]

pseudoscalar TFF �(⇤)�⇤ ! ⇡0, ⌘, ⌘0 at arbitrary virtualities [I,C]
pion, kaon, ⇡⌘ loops �(⇤)�⇤ ! ⇡⇡, KK̄, ⇡⌘ at arbitrary virtualities,

(including scalars and tensors) partial waves [I,C]

Table 14: Priorities for new experimental input and cross-checks.

analogous measurement of the K0
s K0

s system allowed for the first time for equivalent investigations of the TFF of the
f 02(1525).

4.3.3. Other relevant measurements
Anticipating the combined estimate in Sec. 4.9, we discuss here which other, future, measurements will be partic-

ularly useful to improve on the data-driven determination of the HLbL contribution.
Apart from the uncertainty originating from the short-distance regime, the largest individual error is currently

attributed to the axial-vector contributions; beyond that, also scalars and tensors above 1 GeV come with a very
large relative uncertainty and the role of excited pseudoscalar states has been stressed recently in the context of
short-distance constraints [24, 553]. For the estimate of such contributions, data on three- or four-pion as well as
other multi-hadron final states (KK̄⇡, ⌘⇡⇡, ⌘0⇡⇡) are needed. In the past, mostly measurements of the two-photon
production using quasi-real photons were performed. In view of the Landau–Yang theorem [554, 555] that forbids
the coupling of axial vectors to two real photons, new measurements should go beyond that restriction. Studies on the
four-pion final states involving a single virtuality focused on double vector-meson production [556–559].

An experimentally challenging task will be a measurement of the inclusive hadron production cross section in
two-photon collisions at masses between 1 and 3 GeV. The inclusive mass spectra with one or both of the photons
o↵-shell will settle the issue of missing states in the calculations of aHLbL

µ , and may lead to an improved matching of
this intermediate region to quark-loop estimates that interpolate towards the short-distance limits.

Beyond these altogether rather poorly known contributions, there is a strong incentive to further improve upon the
dominant, large pieces. For a dispersive analysis of the singly- and doubly-virtual pseudoscalar TFFs, as discussed
in Sec. 4.4, additional, independent experimental information is needed. The data can be divided into necessary
input to the calculations that, together with theory uncertainties, will determine the accuracy of the predictions; and
experimental cross-checks.

For the dispersive description of the TFFs of ⌘ and ⌘0 (that has not been completed yet) [560], experimental
input to constrain the doubly-virtual behavior are of utmost importance. To this end, detailed di↵erential data on
e+e� ! ⌘⇡+⇡� will contribute to an improved understanding of the deviations of the doubly-virtual TFF from the
factorization hypothesis at intermediate energies. Similarly, di↵erential decay data on ⌘0 ! ⇡+⇡�⇡+⇡� will allow
one to develop a double spectral function, and corresponding measurement of ⌘0 ! ⇡+⇡�e+e� will help complete the
dispersive framework for the ⌘(0) TFFs, although in either case the kinematic range is limited by the decay kinematics.
Finally, data on the Primako↵-type reaction �⇡� ! ⇡�⌘ would be very helpful to better constrain the high-energy
continuation of the dispersive input.

For the ⇡0 TFF [561], precision data on the e+e� ! ⇡+⇡�⇡0 cross section would be desirable to settle tensions
between the existing data. In addition to the cross section studies in the context of HVP, the analysis of !, �! ⇡+⇡�⇡0

decay dynamics provides a valuable cross-check of the dispersive formalism. For � ! ⇡+⇡�⇡0 precision data from
KLOE and CMD-2 can be used [52, 562] but until recently, surprisingly little information had been available on
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Step 1: fixed-s dispersion relation for :γ* γ* → π+π−

Requires BTT tensor decomposition for γ* γ* → π+π−

Coincides with scalar QED supplemented with electromagnetic form factors
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
⇡ (q2

1)FV
⇡ (q2

2)FV
⇡ (q2

3)FV
⇡ (q2

4) (4.40)

⇥
✓ 1
⇡2

Z
ds0dt0

⇢i;st(s0, t0)
(s0 � s)(t0 � t)

+
1
⇡2

Z
ds0du0

⇢i;su(s0, u0)
(s0 � s)(u0 � u)

+
1
⇡2

Z
dt0du0

⇢i;tu(t0, u0)
(t0 � t)(u0 � u)

◆
.

Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation

⇧̄⇡-box
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2
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2
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⇡ (q2
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⇡ (q2
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Z 1

0
dx
Z 1�x

0
dy Ii(x, y) , (4.41)

where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
j � y(1 � x � y)q2

k ,

�i j = M2
⇡ � x(1 � x)q2

i � y(1 � y)q2
j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,
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8xy(1 � 2x)(1 � 2y)
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The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
⇡ (q2

1)FV
⇡ (q2

2)FV
⇡ (q2
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+
1
⇡2

Z
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(t0 � t)(u0 � u)

◆
.

Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
j � y(1 � x � y)q2

k ,

�i j = M2
⇡ � x(1 � x)q2

i � y(1 � y)q2
j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,
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�123�23
,

�i jk = M2
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The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation

⇧̄⇡-box
i (q2

1, q
2
2, q

2
3) = FV

⇡ (q2
1)FV
⇡ (q2
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⇡ (q2

3)
1

16⇡2

Z 1

0
dx
Z 1�x

0
dy Ii(x, y) , (4.41)

where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
j � y(1 � x � y)q2

k ,

�i j = M2
⇡ � x(1 � x)q2

i � y(1 � y)q2
j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
j � y(1 � x � y)q2

k ,

�i j = M2
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i � y(1 � y)q2
j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
⇡ (q2

1)FV
⇡ (q2
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⇡ (q2
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
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Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation
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where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
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k ,
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j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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Figure 62: The dispersively defined box topologies are identical to the sQED one-loop expression, multiplied by pion vector form factors for the
o↵-shell photons.

pole in the sub-process �⇤�⇤ ! ⇡+⇡�: the dispersively defined box topologies are identical to the sQED one-loop
expression, multiplied by one VFF for each of the o↵-shell photons. Note that the sQED loop contribution in terms
of Feynman diagrams consists of boxes, triangles, and bulbs, but that the corresponding unitarity diagrams are just
the three box topologies shown in Fig. 62. The bulb and triangle diagrams in sQED are required for a gauge-invariant
result. However, upon projection on gauge-invariant BTT structures, the kinematic and dynamic singularities are
separated and the sQED contribution to the coe�cient functions only have the dynamic singularities of pure box
topologies, which can be expressed in terms of double-spectral representations.

This relation is useful because it allows one to express the dispersively defined boxes in terms of Feynman-
parameter integrals and to obtain very compact expressions for the scalar functions. In the master formula for aµ
Eq. (4.12), the scalar functions enter in the limit q4 ! 0. For this reduced kinematics, one can explicitly perform the
integral over one Feynman parameter, which leaves a two-dimensional integral representation

⇧̄⇡-box
i (q2

1, q
2
2, q

2
3) = FV

⇡ (q2
1)FV
⇡ (q2

2)FV
⇡ (q2

3)
1

16⇡2

Z 1

0
dx
Z 1�x

0
dy Ii(x, y) , (4.41)

where, e.g.,

I1(x, y) =
8xy(1 � 2x)(1 � 2y)

�123�23
,

�i jk = M2
⇡ � xyq2

i � x(1 � x � y)q2
j � y(1 � x � y)q2

k ,

�i j = M2
⇡ � x(1 � x)q2

i � y(1 � y)q2
j . (4.42)

The expressions for the other scalar functions contributing to aµ can be found in Ref. [20].
Therefore, the only input quantity in the pion-box contribution is the pion VFF. In the master formula Eq. (4.12),

one has to integrate over spacelike q2
i , i.e., it is also the spacelike VFF that is required for the calculation of the pion-

box contribution. The VFF has been studied in much detail in the context of the HVP contribution to aµ and can be
precisely determined in fits to e+e� ! ⇡+⇡� data [4, 242, 243]. For the application of the pion box in HLbL scattering,
the available precision of the VFF is beyond what is needed and leads to the result [20]

a⇡-box
µ = �15.9(2) ⇥ 10�11 . (4.43)

The dispersively defined pion box can be understood as a model-independent notion of a pion loop. The clean
definition of the pion box practically eliminates the uncertainty on this particular contribution.

4.5.2. Pion rescattering, S -waves
The unitarity relation for the HLbL tensor in general provides a connection between the two-pion contribution to

HLbL and the sub-process �⇤�⇤ ! ⇡⇡. Unitarity is diagonal in the space of helicity partial waves, i.e., simply given
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+ = FV
⇡ (q2

1)FV
⇡ (q2

2) ⇥

2
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+ +

3
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Figure 61: Contribution to �⇤�⇤ ! ⇡+⇡� of a charged-pion pole in the crossed channels. The dispersively defined pole contribution is equivalent
to the scalar QED Born terms, multiplied by pion vector form factors for the o↵-shell photons. Adapted from Ref. [473].

where individual systematic uncertainties of CA have been combined linearly. Similarly, combining the result obtained
from CA for the ⇡0, ⌘, and ⌘0 contributions, we obtain

a⇡
0+⌘+⌘0-pole
µ = 94.3(5.3) ⇥ 10�11 , (4.39)

with di↵erences in uncertainties mainly due to the di↵erent treatment in systematic errors.

4.5. Contribution of two-pion intermediate states
As discussed in Sec. 4.2.3, Mandelstam’s double-dispersion relation [643] can be used to define the contributions

of di↵erent hadronic intermediate states to the HLbL tensor and aµ [473] in a model-independent way. In the uni-
tarity relation, the lightest intermediate state is a single neutral pion, giving rise to the pion-pole contribution a⇡

0-pole
µ

discussed in Sec. 4.4. The next lightest intermediate state is given by two pions, either ⇡0⇡0 or ⇡+⇡�. The unitarity
relation for the HLbL tensor expresses the discontinuity due to two-pion intermediate states in terms of the sub-
process �⇤�⇤ ! ⇡⇡. If one applies unitarity a second time and considers intermediate states in the crossed sub-process
�⇤⇡ ! �⇤⇡, one can split the full two-pion contribution to HLbL into a sum of di↵erent box topologies, as illustrated
in Fig. 52. In the following, we discuss the di↵erent two-pion contributions and their numerical evaluation based on
dispersion theory.

4.5.1. Pion box
In the unitarity relation for �⇤⇡+ ! �⇤⇡+, the lightest intermediate state is the charged pion. The starting-point

to define this contribution is a fixed-s dispersion relation for �⇤�⇤ ! ⇡+⇡�. In Ref. [473], it was shown that the pure
pole contribution in this dispersion relation exactly coincides with the Born term in a scalar QED (sQED) calculation
of �⇤�⇤ ! ⇡+⇡�, multiplied by a pion vector form factor (VFF) for each of the two o↵-shell photons as illustrated in
Fig. 61. The seagull term is required in a sQED Feynman-diagram calculation to obtain a gauge-invariant expression.
In the dispersive approach, one first defines a BTT tensor decomposition for �⇤�⇤ ! ⇡⇡ [486, 487], which fully
takes care of gauge invariance, in analogy to the case of the HLbL tensor itself as described in Sec. 4.2.2. In this
representation, gauge invariance is manifest and there are two pion-pole unitarity diagrams present. Note that cutting
the propagator puts the pion on shell: only on-shell states enter the sum of intermediate states in the unitarity relation.
The two hadronic blobs in Fig. 61 therefore correspond to the pion VFF and only depend on the photon virtualities.

If this pure pole term is singled out in both of the sub-processes in the unitarity relation for HLbL, one obtains
the pion-box topology shown in Fig. 52(a). On both sides of the unitarity cut, the hadronic blobs refer to the pion
VFF, which is a function of the respective squared momentum q2

i of the o↵-shell photon. In particular, these factors
do not depend on the Mandelstam variables, hence in a double-dispersion relation that treats the q2

i as fixed external
quantities, they can be taken out of the dispersion integrals and multiply a double-dispersion relation for a pion box
with pointlike vertices:

⇧⇡-box
i (s, t, u; q2

i ) = FV
⇡ (q2

1)FV
⇡ (q2

2)FV
⇡ (q2

3)FV
⇡ (q2

4) (4.40)

⇥
✓ 1
⇡2

Z
ds0dt0

⇢i;st(s0, t0)
(s0 � s)(t0 � t)

+
1
⇡2

Z
ds0du0

⇢i;su(s0, u0)
(s0 � s)(u0 � u)

+
1
⇡2

Z
dt0du0

⇢i;tu(t0, u0)
(t0 � t)(u0 � u)

◆
.

Explicit calculation of the double-spectral densities ⇢i shows that Eq. (4.40) without the form factors is mathematically
equivalent to the one-loop light-by-light expression in sQED [473]. Therefore, the situation is analogous to the pion
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aπ−box
μ = − 15.9(2) × 10−11

aK−box
μ = − 0.5(1) × 10−11

Martin Hoferichter
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Hadronic light-by-light scattering

aHLbL

μ = 2α3

3π2 ∫
∞

0
dQ1 ∫

∞

0
dQ2 ∫

1

−1
dτ 1 − τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

Q2
i = − q2

i , Q2
3 = Q2

1 + Q2
2 + 2τQ1Q2 known kernel 

functions
combinations 
of the scalar 
functions  Πi

Colangelo et. al (2014-2017)

= + +…⏞
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pion/kaon box rescattering contribution
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S-wave amplitudes free from kinematic constraints





Can write a dispersion relation 




Coupled-channel unitarity 
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Broad  resonance is covered by present  re-scattering implementation

Heavier resonances require D- and higher waves, as well as coupled-channel ( , , )

aHLbL
μ [ f0(980)] = − 0.2(2) × 10−11
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ππ π0η KK
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to be validated 
with upcoming 
BESIII data
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   ΠP−pole
1 = −

FPγ*γ*(−Q2
1, − Q2

2) FPγγ*(−Q2
3)

Q2
3 + M2

P

Introduction Review of SDCs Regge Model Conclusion

Dominant pseudoscalar-pole contributions

PS poles:

P

P = ⇡0, ⌘, ⌘0

Hadronic light-by-light tensor:

⇧µ⌫�� =
54X

i=1

T̂µ⌫��
i ⇧̂i

Colangelo et al., JHEP 1704 (2017) 161

Relevant for g-2:

⇧̂⇡0
-pole

1
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1 ,�Q2
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Hadronic content in PS transition form factor (TFF):
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⌦
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aHLbL
μ =

2α3

3π2 ∫
∞

0
dQ1 ∫

∞

0
dQ2 ∫

1

−1
dτ 1 − τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1, Q2, τ) Π̄i(Q1, Q2, τ)



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024

PSEUDOSCALAR-POLE CONTRIBUTION

58

aP−pole
μ = ( α

π )
3

∫ dQ1dQ2dτ [w1(Q1, Q2, τ) FPγ*γ*(−Q2
1 , − Q2

3)FPγ*γ(−Q2
2 ,0)

+w2(Q1, Q2, τ) FPγ*γ*(−Q2
1 , − Q2

2)FPγ*γ(−Q2
3 ,0)]

Figure 58: Weight function w1(Q1,Q2, 0) for ⇡0 (left) and ⌘0 (right); cf. Eq. (4.19). Reprinted from Ref. [19].

where a = 0, . . . , 8 is the corresponding flavor index associated to the Gell-Mann matrices �a, extended to include
�0 ⌘

p
2/3 diag(1, 1, 1), and h0| ja5µ|Pi ⌘ ipµFa

P with ja5µ = q̄�µ�5
�a

2 q. Away from the chiral limit, corrections arise
and ⌘–⌘0 mixing must be accounted for, see Refs. [575, 576] and references therein. The high-energy behavior can be
obtained by expanding the product of electromagnetic currents on the light-cone, obtaining at leading order in pQCD
and at leading-twist [577, 578]

FP�⇤�⇤ (�Q2
1,�Q2

2) =
X

a

2 Tr(Q2�a)Fa
P

Z 1

0
dx

�a
P(x)

xQ2
1 + (1 � x)Q2

2
. (4.22)

Higher-order corrections in pQCD have been derived as well [579, 580]. Since for large momenta �a
P(x) ! 6x(1 �

x) [578, 581], the following limits can be inferred

lim
Q2!1

Q2FP�⇤�⇤ (�Q2, 0) =
X

a

6 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.23)

lim
Q2!1

Q2FP�⇤�⇤ (�Q2,�Q2) =
X

a

2 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.24)

where we include �0 ⌘ 11Nc/3 � 2Nf /3, with Nf the number of e↵ective active flavors. The first limit is commonly
known as the Brodsky–Lepage (BL) limit [577, 578], while the latter can be rigorously obtained from the operator
product expansion (OPE) [582–585]. The ⌘ and ⌘0 cases receive important ↵s corrections due to the anomalous
dimension of the singlet axial current [586], which have been accounted for by the last factor [576, 587, 588]. Finally,
higher-order corrections have been calculated using the OPE, which, for the ⇡0, multiply Eq. (4.24) by (1 � 8

9
�2

Q2 ),
with the estimate �2 = 0.20(2) GeV2 determined from sum rules [583] already used in Refs. [18, 472, 573] and also
supported by lattice results [22, 589].

4.4.2. The pion pole in a dispersive approach
The central idea behind the dispersive analysis of the ⇡0 TFF [21, 493, 590] is to reconstruct this object from

its dominant low-energy singularities. As Fig. 58 (left) demonstrates, the main weight for the HLbL integration
in Eq. (4.19) lies in the region of Qi < 1 GeV; in this range, where a precise and reliable theoretical description is
therefore of prime importance, the intermediate states dominating the discontinuities in the two form factor virtualities
are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis

110

kernel functions 
are peaked at 
low energies

on-shell 
pseudoscalar 
transition form 
factors (TFFs)

π0, η, η′￼ =
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On-shell pseudoscalar ( ) transition form factor :

Normalized to the two-photon decay:

SDCs for pseudoscalar transition form factors (e.g., for the pion):

• Chiral Anomaly: 

• Brodsky-Lepage limit:

• Symmetric pQCD limit:

P = π0, η, η′￼ FPγ*γ*(q2
1 , q2

2)

i∫ d4x eiq1⋅x ⟨0 |T{jμ(x) jν(0)} |P(q1 + q2)⟩ = ϵμνρσqρ
1 qσ

2 FPγ*γ*(q2
1 , q2

2)

Γ(P → γγ) =
πα2M3

P

4
F2

Pγγ, FPγγ = FPγ*γ*(0,0)

Fπ0γγ(0,0) = −
1

4π2fπ
lim

Q2→∞
Fπ0γγ*(Q2) = −

2fπ
Q2

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2
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Dispersive part:

                         

with 

Asymptotic contribution to ensure pQCD limit:

Effective pole ( ) parametrising heavier intermediate states:

Fπ0γ*γ* = Fdisp
π0γ*γ* + Feff

π0γ*γ* + Fasym
π0γ*γ*

Fdisp
π0γ*γ*(−Q2

1 , − Q2
2) = Fdisp

vs (−Q2
1 , − Q2

2) + Fdisp
vs (−Q2

2 , − Q2
1) =

1
π2 ∫

siv

4M2
π

dx∫
sis

sthr

dy
ρ(x, y)

(x + Q2
1)(y + Q2

2)
+ {q1 ↔ q2}

ρ(x, y) =
(x /4 − M2

π)3/2

12π x
Im[(FV

π (x))* f1(x, y)]

Fasym
π0γ*γ*(−Q2

1 , − Q2
2) = 2fπ ∫

∞

sm

dx
Q2

1Q2
2

(x + Q2
1)2(y + Q2

2)2

Meff ∼ 1.5 − 2 GeV

Feff
π0γ*γ*(−Q2

1 , − Q2
2) =

geff

4π2fπ

M4
eff

(M2
eff + Q2

1)(M2
eff + Q2

2)

Dispersive analysis of π0 → γ∗γ∗

• isospin decomposition:

Fπ0γ∗γ∗(q21 , q
2
2) = Fvs(q

2
1 , q

2
2) + Fvs(q

2
2 , q

2
1)

• analyse the leading hadronic intermediate states:
Hoferichter et al. 2014

γ
(∗)
s

π0

γ∗v

π+

π−

γ
(∗)
v

π0

γ∗s

π+

π−

π0

◃ isovector photon: 2 pions

∝ pion vector form factor well known from e+e− → π+π−

× γ∗ → 3π P-wave amplitude Khuri–Treiman formalism

◃ isoscalar photon: 3 pions

B. Kubis, Hadronic light-by-light phenomenology – p. 32

Bastian Kubis
(g-2 school 2021)

M. Hoferichter, B.-L. Hoid, B. Kubis, 
S. Leupold, and S. P. Schneider, JHEP 
10, 141 (2018)

https://indico.mitp.uni-mainz.de/event/208/contributions/3120/attachments/2652/2981/Kubis_g-2-school.pdf


Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024

EMPIRICAL INPUT —  REMINDER

61

Dr
af

t

Hadronic light-by-light scattering: data input

e+e� ! e+e�⇡0 �⇡ ! ⇡⇡�⇡ ! ⇡⇡

e+e� ! ⇡0�e+e� ! ⇡0� !,� ! ⇡⇡� e+e� ! ⇡⇡�

⇡⇡ ! ⇡⇡

Pion transition form factor
F⇡0�⇤�⇤

�
q21, q

2
2

� Partial waves for
�⇤�⇤ ! ⇡⇡ e+e� ! e+e�⇡⇡

Pion vector
form factor F V

⇡

Pion vector
form factor F V

⇡

e+e� ! 3⇡ pion polarizabilitiespion polarizabilities �⇡ ! �⇡

!,� ! 3⇡ !,� ! ⇡0�⇤!,� ! ⇡0�⇤
Colangelo, MH, Kubis, Procura, Stoffer 2014

Reconstruction of �⇤�⇤ ! ⇡⇡,⇡0: combine experiment and theory constraints

Need input on �⇤�⇤ matrix elements for as many states as possible

M. Hoferichter (Institute for Theoretical Physics) Recent progress in hadronic light-by-light scattering August 5, 2021 13
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Q
2 F π

γ*
γ*

(−
Q

2 ,0
)

LQCD 
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Short-distance constraint on HLbL: mixed region
Q2 ⌘ Q2

1 ⇡ Q2
2 � Q2

3 : Vainshtein, Phys. Lett. B569, 187 (2003)

Czarnecki et al., Phys. Rev. D67, 073006 (2003)

Knecht et al., JHEP 03, 035 (2004)

jem⌫

jem�jemµ
q2

jem�

q3q1
OPE�! 2

q̂2 ✏µ⌫↵� q̂↵

jem�A�

jem�

q3

with

q̂ := q1�q2
2

⇧µ⌫��(q1, q2, q3) =
8

q̂2 ✏µ⌫↵� q̂
↵W �

��(�q3, q4)
X

a

C 2
a

Wµ⌫�(q1, q2): 3 transversal and 1 longitudinal structure

Axial anomaly: ⇧̂1 3 wL(q2
1 , q

2
2 , (q1 + q2)2) =

2Nc
(q1+q2)2

Melnikov and Vainshtein, Phys. Rev. D70, 113006 (2004)
Mixed-region constraint on HLbL:

lim
Q2

3!1
lim

Q2!1
Q2Q2

3 ⇧̂
(a)
1 (�Q2,�Q2,�Q2

3 ) = � 2

3⇡2
C 2
a

C 2
0 + C 2

3 + C 2
8
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LONGITUDINAL SHORT-DISTANCE CONSTRAINTS

65

Pseudoscalar-pole (in particular Pion-pole) contributions are the leading 
HLbL contributions

Mixed- and high-energy regions need to be estimated for a full evaluation

Issue: pseudoscalar-pole contribution does not have the asymptotic 
behaviour dictated by QCD 

Effective solution proposed by Melnikov & Vainshtein (MV) is incompatible 
with low-energy properties of the HLbL tensor                                                         
K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004) 

SDCs can be satisfied with a summation over an infinite tower of 
pseudoscalar poles 



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024

SHORT-DISTANCE CONSTRAINTS

66

Tower of excited pseudo scalars (Regge model)                                      
Colangelo, FH, Hoferichter Laub, Stoffer 20/21 

Tower of axial-vectors (holographic QCD model)                                        
Leutgeb, Rebhan 19/21 & Cappiello, Cata, D’Ambrosio, Greynat, Iyer 20 

Calculation of (non-) perturbative corrections to the OPE                         
Bijnens, Hermansson-Truedsson, Laub, Rodriguez-Sanchez 20/21

Interpolants between energy regions                                                        
Lüdtke, Procura 20

General considerations                                                                              
Knecht 20 & Masjuan, Roig, Sanchez-Puertas 20 & Colangelo, FH, Hoferichter Laub, Stoffer 21
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Short-distance contraint on HLbL: high-energy region

Perturbative QCD quark loop:

Q2
1 ⇡ Q2

2 ⇡ Q2
3 � ⇤2

QCD: leading term in the
OPE for HLbL corresponds to the quark loop

Bijnens et al., 1908.03331 (2019)

Analytical expression and decomposition into
scalar functions of the quark loop is known

Hoferichter, Stoffer

High-energy constraint on HLbL (isospin component a = 0, 3, 8):

lim
Q2!1

Q4 ⇧̂(a)
1 (�Q2,�Q2,�Q2) = � 4

9⇡2
C 2
a

C 2
0 + C 2

3 + C 2
8

4/15

Relevant part of the HLbL tensor:

    

G. Colangelo, et al., JHEP 1704 (2017) 161

Longitudinal part is intimately related to the pseudoscalar poles but cannot be 
saturated by  alone, nor by any finite number of poles

SDCs for asymptotic ( ) and mixed energy region 
( ) follow from the operator product expansion (OPE):

  

  

Leading term in the OPE for HLbL corresponds to the perturbative quark loop     
Bijnens et al., 1908.03331 (2019) 

ΠP−pole
1 = −

FPγ*γ*(−Q2
1, − Q2

2) FPγγ*(−Q2
3)

Q2
3 + M2

P

π0, η, η′￼
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2 ≈ Q2
3 ≫ Λ2

QCD
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3
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∞
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SDC FOR MIXED- AND HIGH ENERGIES

67
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SDCs for pseudoscalar transition form factor

• Chiral Anomaly: 

• Brodsky-Lepage limit:

• Symmetric pQCD limit:

Fπ0γγ(0,0) = −
1

4π2fπ
lim

Q2→∞
Fπ0γγ*(Q2) = −

2fπ
Q2

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2
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SDCs for pseudoscalar transition form factor

• Chiral Anomaly: 

• Brodsky-Lepage limit:

• Symmetric pQCD limit:

Fπ0γγ(0,0) = −
1

4π2fπ
lim

Q2→∞
Fπ0γγ*(Q2) = −

2fπ
Q2

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2

Melnikov & Vainshtein replaced the external photon vertex with the transition 
form factor at real-photon point (dropped  dependence)

• Prescription is incompatible with low-energy properties of the HLbL tensor

Q2

Hadronic Contributions Short-distance constraints

Tension between the constraints?

Constraint on the HLbL tensor:

⇧
OPE,(3)
1 �! � 1

6⇡2Q2Q2
3
= � 2f⇡

3Q2
1
Q2

3

1
4⇡2f⇡

Constraints on the pion-pole:

⇧
⇡0�pole
1 = �

F⇡0�⇤�⇤(Q2
1 ,Q

2
2 )F⇡0��⇤(Q2

3 )

Q2
3 +m2

⇡0
�! � 2f⇡

3Q2
1
Q2

3

2f⇡
Q2

3

Melnikov & Vainshtein’s effective solution:

⇡0 M&V�! ⇡0

a⇡
0�pole

µ = 6.26 · 10�10 �! 7.65 · 10�10
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!INFINITE TOWERS OF MESONS

69

Start from a large-Nc Regge model: 
       Broniowski and Ruiz Arriola, Phys. Rev. D74, 034008 (2006) 

    

• Symmetric Momenta: 

• Each term in the sum is of , but the infinite sum satisfies the 

symmetric pQCD limit

Fπ0γ*γ*(−Q2
1 , − Q2

2) ∝ ∑
Vρ,Vω

[ 1
D1

Vρ
D2

Vω

+
1

D1
Vω

D2
Vρ

]
Fπ0γ*γ*(−Q2, − Q2) ∝

∞

∑
n=0

1
[Q2 + M2

V(n)]2

=
1
σ4

V
ψ (1) ( M2

V + Q2

σ2
V )

𝒪(1/Q4)

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2

with Di
X := Q2

i + M2
X
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Start from a large-Nc Regge model: 
       Broniowski and Ruiz Arriola, Phys. Rev. D74, 034008 (2006) 
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• Each term in the sum is of , but the infinite sum satisfies the 
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Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2

In the same way, the SDCs on the HLbL tensor will be satisfied

with Di
X := Q2

i + M2
X
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π0, π(1300), 
π(1800), …

Vector-meson-dominance model for transition form factors of radially-excited 
pseudoscalar mesons 

• Large-Nc limit — spectrum of the theory in any sector (set of quantum 
numbers) reduces to an infinite tower of narrow resonances

• Regge ansatz for masses of radially-excited mesons  

• Minimal model that satisfies all constraints on the transition                         
form factors and HLbL tensor

• Reproduce phenomenological constraints

M2
V(n) = M2

V(0) + n σ2
V

LARGE-Nc REGGE MODEL

70

Fπ(n)γ*γ*(−Q2
1 , − Q2

2) =
1

8π2Fπ {(
M2

ρ M2
ω

D1
ρ(n)D2

ω(n)
+

M2
ρ M2

ω

D2
ρ(n)D1

ω(n) ) [canom +
1

Λ2 (cAM2
+, n + cBM2

−, n) + cdiag
Q2

1Q2
2

Λ2(Q2
+ + M2

diag) ]
+

Q2
−

Q2
+ [cBL +

1
Λ2 (cAM2

−, n + cBM2
+, n)] (

M2
ρ M2

ω

D1
ρ(n)D2

ω(n)
−

M2
ρ M2

ω

D2
ρ(n)D1

ω(n) )}
M2

±, n =
1
2 (M2

ω(n) ± M2
ρ(n)) , Q2

± = Q2
1 ± Q2

2 , Dj
V = Q2

j + M2
Vwith
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"(’) #

#

!

$ % %

$ % $
+ + +

Vector-meson-dominance model with of isoscalar-isoscalar and isovector-isovector pairs

Relative coupling strengths follow from effective Lagrangian 

 and  mixings must be consideredη − η′￼ ϕ − ω
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Total effect of excited pseudoscalar mesons:
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Δaπ−poles
μ

MV
= 13.5 × 10−11 [16.2 × 10−11]

Δaη−poles
μ

MV
= 5.0 × 10−11 [10.0 × 10−11]

Δaη′￼−poles
μ

MV
= 5.0 × 10−11 [12.1 × 10−11]

Original and updated MV result:
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MATCHING TO PERTURBATIVE QUARK LOOP
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aHLbL
μ =

2α3

3π2 ∫
∞

0
dQ1 ∫

∞

0
dQ2 ∫

1

−1
dτ 1 − τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

ΔaLSDC
μ = [8.7(5.5)PS−poles + 4.6(9)q−loop] × 10−11 ∼ 13(6) × 10−11

ΔaPS−poles
μ

MV
= 23.5 × 10−11 [38 × 10−11]

high-energy region: 
Qi ≥ Qmin
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Figure 71: Contribution of the pQCD quark loop to aµ for Q1,2 � Qmin and Q2
3 damped by Q2

3/(Q
2
3 +⇤

2) below Qmin (plus crossed), see main text,
for vanishing quark mass (left) and mq = 0.3 GeV (right). Color coding as in Fig. 70, which is reproduced in the limit ⇤ ! 1. The limit ⇤ ! 0
does not exist for mq = 0. Left diagram reprinted from Ref. [553].

Figure 72: HLbL scattering combined with lepton vacuum polarization. Diagrams where the lepton loop is inserted into the other photon propaga-
tors are not shown. Reprinted from Ref. [31].

4.8. Hadronic light-by-light scattering at NLO
In Ref. [8] the contribution of HVP at O(↵4) to the muon g�2 was calculated as aHVP, NNLO

µ = 12.4(1)⇥10�11. This
result is only suppressed by a factor 1/8 compared to the absolute value of the HVP at NLO. This raises the question
whether other contributions at order O(↵4), i.e., HLbL combined with lepton VP (HLbL at NLO), see Fig. 72, could
become relevant in case of a large prefactor in combination with the expected enhancement factor log(mµ/me). If
HLbL at NLO were 1/8 of the result for HLbL as estimated in Eq. (4.92) in the next section, it would be almost of the
same size as the final precision goal of the Fermilab muon g � 2 experiment.

In Ref. [31] the size of HLbL at NLO was estimated by evaluating the presumably numerically dominating pion-
pole contribution with the additional inclusion of the VP of an electron loop. To allow for a quick numerical evaluation
of the loop integrals, a simple VMD model for the pion TFF was used, which yields a result for HLbL close to the
dispersive approach. One thus obtains the estimate

a⇡
0-pole, NLO
µ = 1.5 ⇥ 10�11 , (4.89)

a correction of about 2.6% to the pion-pole contribution to HLbL with VMD. In fact, from renormalization-group
arguments [692] one would have expected a suppression of

3 ⇥ ↵
⇡
⇥ 2

3
log

mµ
me
⇡ 2.5% , (4.90)

in remarkable agreement with the explicit calculation. In this estimate, the factor 3 originates from the fact that each
of the photon propagators can be renormalized, and the prefactor of the logarithm can be derived from the expression
of the VP in the limit m` ! 0.

135

1 1.5 2 2.5 3
0

5

10

15

20

Qmin [GeV]

a
µ

⇥
1
0

1
1

⇧̄1–12

⇧̄1–2

⇧̄3–12

Figure 70: Contribution of the pQCD quark loop to aµ for Qi � Qmin. Solid lines for vanishing quark masses, dashed lines for mq = 0.3 GeV. The
total contribution from ⇧̄1–12 is shown in black, together with the partial ones from ⇧̄1–2 (red) and ⇧̄3–12 (blue).

region. In Ref. [501] it was determined that a large part of the enhancement is from regions other than where the
SDC is valid, which agrees with the conclusion from Refs. [24, 553] that the main contribution beyond the asymptotic
pQCD part is dominated by the lowest pseudoscalar excitations in the Regge sum. From the curves in Fig. 71 it is also
clear that a total contribution significantly larger then 20 ⇥ 10�11 seems unlikely.

The estimates from the quark-loop and the Regge model with a small enhancement expected from the transversal
contributions lead us to estimate

�aSDC
µ = 15(10) ⇥ 10�11 . (4.87)

This does not include the axial-vector estimate of Sec. 4.6.3 nor the short-distance part of the lowest pseudoscalar
exchange as discussed in Sec. 4.4. The uncertainty is meant to cover the impact of the transversal SDCs as well as
the interplay with states whose masses lie in the matching region between 1–2 GeV. In particular, this needs to be
taken into account when combining the uncertainty in Eq. (4.87) with the ones quoted for these states in Sec. 4.6. In
contrast, double counting with the ground-state pseudoscalar poles is not an issue, since their (small) contribution has
been taken into account in the matching leading to Eq. (4.86), they are also not included in the holographic estimates
we quoted in Eqs. (4.83) and (4.84). A more complete estimate beyond Eq. (4.87) will require a detailed study of
the interplay and matching between di↵erent contributions, in particular for the transversal SDCs and axial-vector
resonances as well as the matching to the quark loop.

For completeness, we also comment on the contribution from the charm quark. Assuming that this contribution
is fully perturbative, with mass mc = 1.27(2) GeV [256], the quark loop evaluates to ac-loop

µ = 3.1(1) ⇥ 10�11. In
analogy to the light quarks, one would expect the most important nonperturbative e↵ect to be related to the pole
contribution from the lowest-lying cc̄ resonance, the ⌘c(1S ) with mass m⌘c(1S ) = 2.9839(5) GeV and two-photon width
�(⌘c(1S ) ! ��) = 5.0(4) keV [256]. Using a VMD-type form factor with scale set by the J/ (as suggested by a
significant branching fractionB(J/ ! ⌘c(1S )�) = 1.7(4)% [256]), this leads to the estimate a⌘c(1S )

µ = 0.8⇥10�11 [24]
(this estimate agrees with the Dyson–Schwinger-equation result a⌘c(1S )

µ = 0.9(1)⇥10�11 from Refs. [620, 691]). Given
the relatively low scale set by mc one may also expect ↵s corrections in a similar ballpark. To avoid a potential double
counting issue, we do not add the ⌘c to the quark loop, but consider its contribution as an indication for the uncertainty
from nonperturbative e↵ects. Altogether, we estimate

ac-quark
µ = 3(1) ⇥ 10�11 , (4.88)

while the b-quark contribution is already suppressed to the level of 10�13.
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Axial vectors are affected by basis ambiguities

Model-independent treatment of axial vectors particularly urgent

Melnikov, Vainshtein ‘04 22(5)
Pauk, Vanderhaeghen ’14 (w/o a1) 6.4(2.0)

Jegerlehner ‘17 7.6(2.7)
Roig, Sanchez-Puertas ‘20 0.8(+3.5,-0.8)
Leutgeb, Rebhan ’19 ‘21 17

Capiello et al. ‘20 ~14

a1(1260) + f1(1285) + f1(1420)
aHLbL

μ [axials] × 1011
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Higher-order corrections in  can be logarithmically enhanced, e.g., HVP at :  

Naïve expectation:

Electron vacuum polarization correction to pion-pole contribution: 

Total estimate: 

α 𝒪(α4)

aHVP, NNLO
μ = 12.4(1) × 10−11 ∼ 12.5 % × aHVP, NLO

μ

3 ×
α
π

×
2
3

log
mμ

me
∼ 2.5 %

aπ0−pole, NLO
μ = 1.5 × 10−11 ∼ 2.6 % × aπ0−pole

μ

aHLbL, NLO
μ = 2(1) × 10−11
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Figure 71: Contribution of the pQCD quark loop to aµ for Q1,2 � Qmin and Q2
3 damped by Q2

3/(Q
2
3 +⇤

2) below Qmin (plus crossed), see main text,
for vanishing quark mass (left) and mq = 0.3 GeV (right). Color coding as in Fig. 70, which is reproduced in the limit ⇤ ! 1. The limit ⇤ ! 0
does not exist for mq = 0. Left diagram reprinted from Ref. [553].

Figure 72: HLbL scattering combined with lepton vacuum polarization. Diagrams where the lepton loop is inserted into the other photon propaga-
tors are not shown. Reprinted from Ref. [31].

4.8. Hadronic light-by-light scattering at NLO
In Ref. [8] the contribution of HVP at O(↵4) to the muon g�2 was calculated as aHVP, NNLO

µ = 12.4(1)⇥10�11. This
result is only suppressed by a factor 1/8 compared to the absolute value of the HVP at NLO. This raises the question
whether other contributions at order O(↵4), i.e., HLbL combined with lepton VP (HLbL at NLO), see Fig. 72, could
become relevant in case of a large prefactor in combination with the expected enhancement factor log(mµ/me). If
HLbL at NLO were 1/8 of the result for HLbL as estimated in Eq. (4.92) in the next section, it would be almost of the
same size as the final precision goal of the Fermilab muon g � 2 experiment.

In Ref. [31] the size of HLbL at NLO was estimated by evaluating the presumably numerically dominating pion-
pole contribution with the additional inclusion of the VP of an electron loop. To allow for a quick numerical evaluation
of the loop integrals, a simple VMD model for the pion TFF was used, which yields a result for HLbL close to the
dispersive approach. One thus obtains the estimate

a⇡
0-pole, NLO
µ = 1.5 ⇥ 10�11 , (4.89)

a correction of about 2.6% to the pion-pole contribution to HLbL with VMD. In fact, from renormalization-group
arguments [692] one would have expected a suppression of

3 ⇥ ↵
⇡
⇥ 2

3
log

mµ
me
⇡ 2.5% , (4.90)

in remarkable agreement with the explicit calculation. In this estimate, the factor 3 originates from the fact that each
of the photon propagators can be renormalized, and the prefactor of the logarithm can be derived from the expression
of the VP in the limit m` ! 0.
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# dressed photon propagators

electron VP for me → 0



Simon Eidelman School onSimon Eidelman School on

supported by Wilhelm and Else Heraeus Foundation

Muon Dipole 
Moments
and
Hadronic
Effects
Sep 2nd-6th 2024 
KMI, Nagoya University, Japan

Web ■ https://indico.kmi.nagoya-u.ac.jp/event/8/
contact ■ muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Muon magnetic moment: Experiment
Anna Driutti (Pisa)

Muon magnetic moment: Theory
Martin Hoferichter (Bern)

Data input to hadronic vacuum polarization
Zhiqing Zhang (IJCLab)

Lattice QCD: Hadronic vacuum polarization
Aida El-Khadra (UIUC)

Lattice QCD: Light-by-light
Harvey Meyer (Mainz)

Hadronic light-by-light: Phenomenology
Franziska Hagelstein (Mainz)

Hadronic light-by-light: Data input
Andrzej Kupsc (NCBJ/Uppsala)

New physics contributions
Kei Yamamoto (Hiroshima Tech)

Detector technology
Paula Collins (CERN)

Accelerator technology
Mika Masuzawa (KEK)

Precision measurements
Fan Xin (Northwestern)

Monte Carlo generators
Yannick Ulrich (Bern)

Topics & Lecturer

Gilberto Colangelo (Bern), Achim Denig (Maintz), Toru Iijima (Nagoya, Chair), 
Kenji Inami (Nagoya), Jim Libby (Indian Inst. Tech. Madras),
Tsutomu Mibe (KEK), Boris Shwartz (BINP)

Scientific organizers

Seiso Fukumura (Niigata), Toru Iijima (Nagoya), Kenji Inami (Nagoya),
Masato Kimura (KEK), Tsutomu Mibe (KEK), Yuki Sue (Nagoya),
Kazumichi Sumi (Nagoya), Kazuhito Suzuki (Nagoya)

Local organizers

22K21347, 22K21347, 22K21350

Xing Fan (Northwestern)

RECENT PROGRESS

— PRECISION GOAL 10% —



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024 85

Gilberto Colangelo
(CD24, Bochum)

https://www.indico.tp2.ruhr-uni-bochum.de/event/2/contributions/109/attachments/101/211/g-2_Bochum-CD2024.pdf


Simon Eidelman School onSimon Eidelman School on

supported by Wilhelm and Else Heraeus Foundation

Muon Dipole 
Moments
and
Hadronic
Effects
Sep 2nd-6th 2024 
KMI, Nagoya University, Japan

Web ■ https://indico.kmi.nagoya-u.ac.jp/event/8/
contact ■ muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Muon magnetic moment: Experiment
Anna Driutti (Pisa)

Muon magnetic moment: Theory
Martin Hoferichter (Bern)

Data input to hadronic vacuum polarization
Zhiqing Zhang (IJCLab)

Lattice QCD: Hadronic vacuum polarization
Aida El-Khadra (UIUC)

Lattice QCD: Light-by-light
Harvey Meyer (Mainz)

Hadronic light-by-light: Phenomenology
Franziska Hagelstein (Mainz)

Hadronic light-by-light: Data input
Andrzej Kupsc (NCBJ/Uppsala)

New physics contributions
Kei Yamamoto (Hiroshima Tech)

Detector technology
Paula Collins (CERN)

Accelerator technology
Mika Masuzawa (KEK)

Precision measurements
Fan Xin (Northwestern)

Monte Carlo generators
Yannick Ulrich (Bern)

Topics & Lecturer

Gilberto Colangelo (Bern), Achim Denig (Maintz), Toru Iijima (Nagoya, Chair), 
Kenji Inami (Nagoya), Jim Libby (Indian Inst. Tech. Madras),
Tsutomu Mibe (KEK), Boris Shwartz (BINP)

Scientific organizers

Seiso Fukumura (Niigata), Toru Iijima (Nagoya), Kenji Inami (Nagoya),
Masato Kimura (KEK), Tsutomu Mibe (KEK), Yuki Sue (Nagoya),
Kazumichi Sumi (Nagoya), Kazuhito Suzuki (Nagoya)

Local organizers

22K21347, 22K21347, 22K21350

Xing Fan (Northwestern)

THANK YOU FOR YOUR ATTENTION!



Back-up Slides



Simon Eidelman School onSimon Eidelman School on

supported by Wilhelm and Else Heraeus Foundation

Muon Dipole 
Moments
and
Hadronic
Effects
Sep 2nd-6th 2024 
KMI, Nagoya University, Japan

Web ■ https://indico.kmi.nagoya-u.ac.jp/event/8/
contact ■ muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Muon magnetic moment: Experiment
Anna Driutti (Pisa)

Muon magnetic moment: Theory
Martin Hoferichter (Bern)

Data input to hadronic vacuum polarization
Zhiqing Zhang (IJCLab)

Lattice QCD: Hadronic vacuum polarization
Aida El-Khadra (UIUC)

Lattice QCD: Light-by-light
Harvey Meyer (Mainz)

Hadronic light-by-light: Phenomenology
Franziska Hagelstein (Mainz)

Hadronic light-by-light: Data input
Andrzej Kupsc (NCBJ/Uppsala)

New physics contributions
Kei Yamamoto (Hiroshima Tech)

Detector technology
Paula Collins (CERN)

Accelerator technology
Mika Masuzawa (KEK)

Precision measurements
Fan Xin (Northwestern)

Monte Carlo generators
Yannick Ulrich (Bern)

Topics & Lecturer

Gilberto Colangelo (Bern), Achim Denig (Maintz), Toru Iijima (Nagoya, Chair), 
Kenji Inami (Nagoya), Jim Libby (Indian Inst. Tech. Madras),
Tsutomu Mibe (KEK), Boris Shwartz (BINP)

Scientific organizers

Seiso Fukumura (Niigata), Toru Iijima (Nagoya), Kenji Inami (Nagoya),
Masato Kimura (KEK), Tsutomu Mibe (KEK), Yuki Sue (Nagoya),
Kazumichi Sumi (Nagoya), Kazuhito Suzuki (Nagoya)

Local organizers

22K21347, 22K21347, 22K21350

Xing Fan (Northwestern)

HLBL CONTRIBUTION TO 

— RESCATTERING —

(g − 2)μ

slides courtesy of
Oleksandra Deineka
(MTHS school, Bochum)

https://indico.gsi.de/event/19202/contributions/81188/attachments/48018/69527/Deineka_MTHS2024.pdf


Two pseudoscalar contribution

������� ����
������
�����

��� ��� ��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

� [���]

σ
(γ
γ→

π�
η)
[�
�]

σ/f0(500)

γγ → π0ηγγ → π0π0

+ γγ → π+π−

Crystal Ball
Belle

0.4 0.6 0.8 1.0 1.2 1.4
0

50

100

150

s [GeV]

σ
(γ
γ

π0
π0
)[
nb

]

a0(980)

a2(1320)

f0(980)

f2(1270)

μ

γ

, 

ππ, πη

KK

Important ingredients: 
 

for spacelike 
γ*γ* → ππ, πη, …

γ*












































































































ππ, πη

γ*

ππ, KK
πη, KK

γ*

89



Two pseudoscalar contribution

μ

γ

, 

ππ, πη

KK

Important ingredients: 
 

for spacelike 
γ*γ* → ππ, πη, …

γ*

aHLbL
μ =

2α3

3π2 ∫
∞

0
dQ1 ∫

∞

0
dQ2 ∫

1

−1
dτ 1 − τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

 for the re-scattering contribution in the -wave





Unitarity  

Π̄i S

Π̄J=0
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π ∫

∞

sth

ds′￼
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λ12(s′￼)(s′￼− q2
3)2 (f(s′￼)Imh̄(0)

++,++(s′￼) − g(s′￼)Imh̄(0)
00,++(s′￼))

Imh̄(0)
λ1λ2,λ3λ4

(s) = h̄(0)
λ1λ2

(s)ρππ/πη(s)h̄(0)*
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(s) + k̄(0)
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helicity amplitudes 
γ*γ* → γ*γ*

Colangelo et. al (2017)

phase-space factor

γ*γ* → πη
γ*γ* → ππ

γ*γ* → KK
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Dispersion relation 
S-wave amplitudes free from kinematic constraints





Can write a dispersion relation 




Coupled-channel unitarity 




h̄(0)
i=1,2 =
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kin

, s(±)
kin ≡ − (Q1 ± Q2)2
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Hadronic input
Unitarity relation for the hadronic amplitude





Once-subtracted dispersion relation





Can be solved by means of  N/D ansatz 

Disc tab(s) = ∑
c

tac(s)ρc(s)t*cb(s)

tab(s) = Uab(s) +
s
π ∑

c
∫

∞

sthr

ds′￼

s′￼

Disc tab(s′￼)
s′￼− s

tab(s) = ∑
c

D−1
ac (s) Ncb(s)

contributions from 
the right-hand cuts

contributions from 
the left-hand cuts

Conformal mapping expansion for hadronic left-hand cuts


U(s) =
∞

∑
n=0

Cn(ξ(s))nGasparyan, Lutz (2010)
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Chew, Mandelstam (1960) 
Luming (1964) 
Johnson, Warnock (1981)



Hadronic input
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Danilkin,  D.,  Vanderhaeghen (2020)

García-Martin et al. (2011)

Peláez, Rodas (2020)
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The generalization to the case of off-shell 
photons require knowledge of 
electromagnetic pion/kaon form factors

��������� �� ���

����� �� ���

����

���

���
�������� ��

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�� [����]

|� π
(�

� )
�

π/K

π/K

π/K

γ*

γ*

94



Simon Eidelman School onSimon Eidelman School on

supported by Wilhelm and Else Heraeus Foundation

Muon Dipole 
Moments
and
Hadronic
Effects
Sep 2nd-6th 2024 
KMI, Nagoya University, Japan

Web ■ https://indico.kmi.nagoya-u.ac.jp/event/8/
contact ■ muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Muon magnetic moment: Experiment
Anna Driutti (Pisa)

Muon magnetic moment: Theory
Martin Hoferichter (Bern)

Data input to hadronic vacuum polarization
Zhiqing Zhang (IJCLab)

Lattice QCD: Hadronic vacuum polarization
Aida El-Khadra (UIUC)

Lattice QCD: Light-by-light
Harvey Meyer (Mainz)

Hadronic light-by-light: Phenomenology
Franziska Hagelstein (Mainz)

Hadronic light-by-light: Data input
Andrzej Kupsc (NCBJ/Uppsala)

New physics contributions
Kei Yamamoto (Hiroshima Tech)

Detector technology
Paula Collins (CERN)

Accelerator technology
Mika Masuzawa (KEK)

Precision measurements
Fan Xin (Northwestern)

Monte Carlo generators
Yannick Ulrich (Bern)

Topics & Lecturer

Gilberto Colangelo (Bern), Achim Denig (Maintz), Toru Iijima (Nagoya, Chair), 
Kenji Inami (Nagoya), Jim Libby (Indian Inst. Tech. Madras),
Tsutomu Mibe (KEK), Boris Shwartz (BINP)

Scientific organizers

Seiso Fukumura (Niigata), Toru Iijima (Nagoya), Kenji Inami (Nagoya),
Masato Kimura (KEK), Tsutomu Mibe (KEK), Yuki Sue (Nagoya),
Kazumichi Sumi (Nagoya), Kazuhito Suzuki (Nagoya)

Local organizers

22K21347, 22K21347, 22K21350

Xing Fan (Northwestern)

HLBL CONTRIBUTION TO 

— SHORT DISTANCE CONSTRAINTS —

(g − 2)μ



Simon Eidelman School 2024 @ Nagoya University          Franziska Hagelstein          5th Sep 2024 96

OPE AND NON-RENORMALIZATION THEOREMS

Isospin-triplet component: 

 limit ( ) changes the kinematics into ,  and :

OPE limit  and no constraint on : 

Known behaviour in the chiral limit: 

Therefore: 

Π̂1(q2
1 , q2

2 , q2
3 ,0; s, t, u) =

Fπγ*γ*(q2
1, q2

2)Fπγγ*(q2
3)

s − M2
π

+ …

g − 2 q4 → 0 s = q2
3 t = q2

2 u = q2
1

Π̄1(q2
1 , q2

2 , q2
3) := Π̂1(q2

1 , q2
2 , q2

3 ,0; q2
3 , q2

2 , q2
1) =

Fπγ*γ*(q2
1, q2

2)Fπγγ*(q2
3)

q2
3 − M2

π
+ G(q2

1 , q2
2 , q2

3)

̂q2 := q2
1 = q2

2 ≫ Λ2
QCD q3

Π̄1( ̂q2, ̂q2, q2
3) = −

2Fπ

3 ̂q2 [
Fπγγ

q2
3

+
Fπγγ*(q2

3) − Fπγγ

q2
3

+ 𝒪(M2
π)] + G( ̂q2, ̂q2, q2

3) + 𝒪( ̂q−3)

Π̄1( ̂q2, ̂q2, q2
3)

mq=0
= −

1
6π2

1
̂q2q2

3
+ 𝒪( ̂q−3)

G( ̂q2, ̂q2, q2
3)

mq=0
=

2Fπ

3 ̂q2

Fπγγ*(q2
3) − Fπγγ

q2
3 mq=0

+ 𝒪( ̂q−3)
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OPE AND NON-RENORMALIZATION THEOREMS
Non-renormalization theorem tells us that the  dependence of the leading term is 
exact ( ): 

 implicitly assumes 

Melnikov & Vainshtein model extrapolates a constraint only valid at asymptotically high 
energies to all possible , thus distorts the low-energy properties of the HLbL 
tensor K. Melnikov and A. Vainshtein, 1911.05874

Our model  satisfies SDC only away from 

the chiral limit and for :

q2
3

̂q2 := q2
1 = q2

2 ≫ Λ2
QCD

G( ̂q2, ̂q2, q2
3)

mq=0
=

2Fπ

3 ̂q2

Fπγγ*(q2
3) − Fπγγ

q2
3 mq=0

+ 𝒪( ̂q−3)

Π̄MV
1 (q2

1 , q2
2 , q2

3) =
Fπγ*γ*(q2

1, q2
2)Fπγγ

q2
3 − M2

π

G(q2
1 , q2

2 , q2
3)MV = − Fπγ*γ*(q2

1 , q2
2)

Fπγγ*(q2
3) − Fπγγ

q2
3 − M2

π

q2
1 , q2

2

GeP(q2
1 , q2

2 , q2
3) = ∑

i=1

Fπγ*γ*(q2
1, q2

2)Fπγγ*(q2
3)

q2
3 − M2

π(i)

q2
3 ≫ ΛQCD lim

̂q2→∞
̂q2GeP( ̂q2, ̂q2, q2

3) = −
1

6π2q2
3

+ 𝒪(q−3
3 )
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HOLOGRAPHIC QCD — HW2 MODEL

where ,  and

 J. Leutgeb and A. Rebhan, 1912.01596 & L. Cappiello, et al., 1912.02779

• Corrections to the  behaviour vanish in the chiral limit

where 

Pseudoscalar TFF with correct normalization, BL and symmetric pQCD limits: 

Π̄HW2
1 = Fπγ*γ*(q2

1 , q2
2)[

Fπγγ

q2
3 − M2

π
+

M2
π(Fπγγ*(q2

3) − Fπγγ)
q2

3(q2
3 − M2

π) ] −
F2

πγγ

q2
3 ∫

z0

0
dzα′￼(z)v1(z)v2(z)v̄3(z)

vi(z) = zQi [K1(zQi) +
K0(z0Qi)
I0(z0Qi)

I1(zQi)] α(z) = 1 − z2/z2
0

z0 = ( 2πFπ)−1

1/q2
3

GHW2(q2
1 , q2

2 , q2
3) = Fπγ*γ*(q2

1 , q2
2)

Fπγγ*(q2
3) − Fπγγ

q2
3

−
F2

πγγ

q2
3 ∫

z0

0
dzα′￼(z)v1(z)v2(z)v̄3(z)

v̄i(z) = vi(z) − 1

Fπγ*γ*(q2
1 , q2

2) = − Fπγγ ∫
z0

0
dz α′￼(z)v1(z)v2(z)
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COMPARISON OF SDC MODELS
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HW2 axial-vector tower 
(solid)


pseudoscalar tower 
(dashed)


Melnikov & Vainshtein 
(dot-dashed)
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CONTRIBUTION TO g-2
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GROUND-STATE AXIAL-VECTOR
Is it possible to satisfy the MV SDC by means of a single axial-vector meson 
(per isospin channel)? — incompatible with L3 data

Symmetry properties of axial-vector TFFs: 

 

Assuming the basis: , the constraint factorizes:

F1(q2
1 , q2

2) = − F1(q2
2 , q2

1), F2(q2
2 , q2

1) = − F3(q2
1 , q2

2)

G2(q2
1 , q2

2) = (q2
1 − q2

2)F1(q2
1 , q2

2) + q2
1F2(q2

1 , q2
2) + q2

2F2(q2
2 , q2

1)

G1(q2) = F1(q2,0) + F2(q2,0) =
G2(q2,0)

q2

G(q2
1 , q2

2 , q2
3) =

G2(q2
1, q2

2)G1(q2
3)

M6
A

lim
̂q2→∞

x
G2( ̂q2, ̂q2)

M4
A

= −
2

3 ̂q2
+ 𝒪( ̂q−3) ,

G1(q2
3)

xM2
A

= − Fπ
Fπγγ*(q2

3) − Fπγγ

q2
3
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AXIAL-VECTOR TRANSITION FORM FACTOR
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