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Background and Purpose

• Generative models represent one of the most groundbreaking 
advancements in machine learning research over the past decade.

• They have the potential to dramatically transform the future of 
science.

• In this talk, we will introduce representative generative models and 
their applications in scientific research.
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Outline

• What are generative models?
• Three generative models

– Generative Adversarial Networks (GANs)
– Variational AutoEncoders (VAEs)
– Diffusion Models (DMs)

• Summary
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WHAT ARE GENERATIVE 
MODELS?
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Deep Neural Networks

• Over the past decade, it was shown that deep neural networks (DNNs) 
outperform human recognition abilities by learning only 10! images. 

Training data: 1,000 images per category across 1,000 categories
Test data: Approximately 150,000 images
TOP-5 error: 15.3% (1st place) # 2nd place was 26.2%. DNNs achieved an overwhelming victory.

Krizhevsky et al, NIPS2012, pp.1097-1105 (2012)
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From Recognition to Generation
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• This suggests that data such as images, language, and music, which humans 
can understand meaningfully, might not actually contain as much information 
(or be as complex) as we might think.

Just as a Gaussian distribution can be estimated from numerical data to generate 
new data, it may be possible to estimate a "generative model for images" from 
image data to generate new images.
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Challenges in Modeling 
High-dimensional Distributions 

• High-dimensional distributions often require complex models to 
accurately capture their structure. High-dimensional and complex 
models are often accompanied by the following challenges:  

– Curse of dimensionality: The volume of the space grows exponentially 
with dimensionality, requiring an exponentially larger amount of data to 
sufficiently cover the space and accurately model the distribution.

– Computational complexity: Methods such as kernel-based 
approaches or Bayesian inference can become infeasible due to high 
computational overhead.
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Practically Unique Solution
• Latent variable models

– Express complex distributions in high-dimensional space by mixtures of 
computationally manageable models such as Gaussians. 

𝑝! 𝒙 = $𝑝! 𝒙|𝒛 𝑝 𝒛 𝑑𝒛

𝑝 𝒛 = 𝑁 𝒛|0, 𝐼
𝒛: Latent variable (Gaussian)

𝒙: Visible variable (Image, languages, music, etc)

⋯ 𝑝! 𝒙|𝒛

Advantage: 
Can represent high-D. and 
complex distributions 
suppressing 
• Curse of dimensionality
• Computational complexity
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How to Train Models

• Currently, there are three major approaches for training the high-
dimensional latent variable models
– Generative adversarial networks (GANs)
– Variational auto encoders (VAEs)
– Diffusion models (DMs)

• In the following, we will sequentially explore these ideas and their 
applications.
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GENERATIVE ADVERSARIAL 
NETWORKS (GANS)



12/47

Core Idea of GANs

• It is difficult for anything other than a human to evaluate whether an 
image represents a "human face." 

• However, having humans intervene to assess the quality of training 
outcomes is too costly.

Create the evaluator using machine 
learning as well
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Generative Adversarial Networks: GANs

Latent variable

z ~ p z( ) x ~ p x z;θg( )
Visible variable（Fake image）

Training data（Real image）

Discriminator
（Evaluator）

Pan et al, IEEE Access 7, pp. 36322—36333 (2019)

Generator

D x;θd( )
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Requirements for Each Module

Generator ：
To create fakes that are indistinguishable 
from the real ones

Discriminator ：
To accurately differentiate between “real” and “fake”

Learning is advanced by making them compete 
with each other  
(a game of cat-and-mouse, like counterfeiting money).

DNNs
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Objective Function of GANs

V D,G( ) ! Ex~pdata x( )
logD x( )⎡⎣ ⎤⎦ +Ez~p z( )

log 1− D G z( )( )( )⎡⎣ ⎤⎦

min
G
max
D

V D,G( ){ }

D x( ) !
1− D x( ) =

The con2idence that x is “𝑹𝒆𝒂𝒍”

The con2idence that x is “𝑭𝒂𝒌𝒆”

Goodfellow et al, Advances in Neural Information Processing Systems 27 (2014)
(DOI: 10.1145/3422622)

Learning Rule

http://dx.doi.org/10.1145/3422622
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Implication

Discriminator： Aim to classify real as “real” and fake as “fake”.

max
!

𝑉

V D,G( ) ! Ex~pdata x( )
logD x( )⎡⎣ ⎤⎦ +Ez~p z( )

log 1− D G z( )( )( )⎡⎣ ⎤⎦

"1" "0"

Learning 𝐷 for fixed 𝐺
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Implication 

Generator：Aim to make Disc. classify fake as “real” 

min𝑉
"

V D,G( ) ! Ex~pdata x( )
logD x( )⎡⎣ ⎤⎦ +Ez~p z( )

log 1− D G z( )( )( )⎡⎣ ⎤⎦
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Implication 

max𝑉
!

R R

R R

F
F

F
F

F

R D

G

V D,G( ) ! Ex~pdata x( )
logD x( )⎡⎣ ⎤⎦ +Ez~p z( )

log 1− D G z( )( )( )⎡⎣ ⎤⎦

R R

R R

F
F

F
F

F

R D

G
"1" "0"

Discriminator： Aim to classify real as “real” and fake as “fake”.

Learning 𝐷 for fixed 𝐺
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Implication 

min𝑉
"

V D,G( ) ! Ex~pdata x( )
logD x( )⎡⎣ ⎤⎦ +Ez~p z( )

log 1− D G z( )( )( )⎡⎣ ⎤⎦

"1"
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Can’t distinguish “fake” from “real”!

Generator：Aim to make Disc. classify fake as “real” 

Learning 𝐺 for fixed 𝐷
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Strength and Weakness of GANs

• Strength
– High-Quality: Can produce highly realistic and high-resolution 

images
– Fast generation: Can generate data fast
– Versatile Applications: Have a wide range of applications

• Weakness 
– Training Instability: Can be unstable and challenging
– Evaluation Difficulty: Lack of standardized metrics
– Computational Cost: Significant computational resources for 

training
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Applications to Science

• Currently, GANs are employed in various fields of science. 
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Acceleration of Particle Physics Simulation

• Accelerating 3D particle shower simulations using GANs

PHYSICAL REVIEW D 97, 014021 (2018)

G
enerator

D
iscrim

inator

CPU: Same or 
10" ∼ 10#× faster 

Modeling of electromagnetic 
showers in a longitudinally 
segmented calorimeter 

GPU: 10$× faster 

Performance Gain

than conventional method
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Restoration of Galaxy Images

• Restore features of galaxy images beyond the observational limits 
using GANs.

MNRAS 467, L110–L114 (2017)

Train GAN to recover original images
handling artificially degraded images 
as “latent variables”

Trained GAN outperforms the standard
method in restoration performance
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VARIATIONAL 
AUTOENCODERS (VAES)
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Core Idea of VAEs
• Train the generative model and the recognition model simultaneously.

– Efficient training becomes possible by finding appropriate representations 
in the latent space.

𝑝! 𝒙 = $𝑝! 𝒙|𝒛 𝑝 𝒛 𝑑𝒛

𝑝 𝒛 = 𝑁 𝒛|0, 𝐼

⋯ 𝑝! 𝒙|𝒛

Generative model
(Decoder)

𝑝%&'& 𝒙 =
1
𝑁
F

()*

+
𝛿 𝒙 − 𝒙(

𝑞, 𝒛 = $ 𝑞, 𝒛|𝒙 𝑝%&'& 𝒙 𝑑𝒙

⋯ 𝑞, 𝒛|𝒙

Recognition model
(Encoder)
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Training Principle

• Basically, VAE aims to maximize the marginal likelihood (evidence)

• Unfortunately, this is generally difficult to carry out due to the model 
complexity.

max&
"#$

%
log 𝑝& 𝒙" = max&

"#$

%
log-𝑝& 𝒙"|𝒛" 𝑝 𝒛" 𝑑𝒛" .
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Tractable Modeling and ELBO

• Two techniques for tractability
– Analytically tractable modeling

– Replacement of the log likelihood with its lower bound termed 
“Evidence Lower Bound (ELBO)”.

&
"#$

%
log 𝑝& 𝒙"

≥&
"#$

%
𝔼 '! 𝒛|𝒙" log 𝑝& 𝒙"|𝒛 − 𝐷+, 𝑞- 𝒛|𝒙" ||𝑝 𝒛 =: 𝐸𝐿𝐵𝑂(𝜙, 𝜃)

𝑝! 𝒙|𝒛 = 𝑁 𝒙|𝜇! 𝒛 , Σ! 𝒛 : Generative (Decoder) 

𝑞, 𝒛|𝒙 = 𝑁 𝑧|𝜇, 𝒙 , Σ, 𝒙 : Recognition (Encoder)
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Implication of ELBO

• Implication of each term 

Reconstruction quality for training data 
in the visible space

𝐸𝐿𝐵𝑂 𝜙, 𝜃 =+
!"#

$
𝔼 %! 𝒛|𝒙" log 𝑝) 𝒙!|𝒛 − 𝐷*+ 𝑞, 𝒛|𝒙! ||𝑝 𝒛



29/47

Implication of ELBO

• Implication of each term 

𝐸𝐿𝐵𝑂 𝜙, 𝜃 =+
!"#

$
𝔼 %! 𝒛|𝒙" log 𝑝) 𝒙!|𝒛 − 𝐷*+ 𝑞, 𝒛|𝒙! ||𝑝 𝒛

Distance btw two distributions
𝑝 𝒛 = 𝑁 0, 𝐼 and 𝑞- 𝒛 = ∫ 𝑞- 𝒛|𝒙 𝑝./0/ 𝒙 𝑑𝒙
in the latent space.
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Strength and Weakness of VAEs

• Strength
– Capable of learning a clear structure of the latent space.
– Simple design that integrates reconstruction and generation.

• Weakness
– The quality of generated data is slightly inferior compared to 

GANs.
– The analytically tractable modeling may not adapt well to 

complex data.
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Applications to Science

• VAEs are also employed for various purposes of science. 
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Anomaly Detection in Brain

• Create a filter using VAE to extract the essential parts from brain 
MRI images

• Detect anomaly by examining difference btw “input” and “output”

Computers in Biology and Medicine 154 (2023) 106610
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Design of Molecules

• Extract characteristic features of functional molecules in the latent 
space by VAE.

• Train a regression model to predict molecular properties from the 
latent space.

• Exploring better molecules that maximize specific properties (e.g., 
drug-likeness, synthesizability) using the regression model.

ACS Cent. Sci. 2018, 4, 268−276
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DIFFUSION MODELS (DMS)
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Core Idea of Diffusion Models

• Sampling from Gaussians is easy even for high-dimensional space.

Gradually transform Gaussian to data 
distribution using non-equilibrium
statistical mechanics 
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Morphing of Distributions

• Any distribution can be transformed to a Gaussian by Langevin Eq. 
gradually changing damping/noise parameters. 

𝒙- = ⁄𝛼- 𝛼-.# 𝒙-.# + 1 − ⁄𝛼- 𝛼-.# 𝒛-.# 𝒛-.# ∼ 𝑁 0, 𝐼 ; 𝑡 ∈ 1,2, … , 𝑇

Initial state: 𝒙/ ∼ 𝑝01-1 𝒙/

Set 1 = 𝛼/ > 𝛼# > ⋯ > 𝛼2 = 0

Simulation: 
𝛼- = 0.99-
𝑇 = 1000 (up to 𝑡 = 300)
#particles = 103
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Reverse Morphing

• If vector field ∇𝒙# log 𝑝1# 𝒙0 (score) is available, we can recover 
𝑝1$ 𝒙2 = 𝑝./0/ 𝒙2 from the Gaussian by the reverse Langevin Eq.  

Initial state: 𝒙2 ∼ 𝑝4# 𝒙2 = 𝑁(0, 𝐼)
Set 1 = 𝛼/ > 𝛼# > ⋯ > 𝛼2 = 0

𝒙03$ =
1
⁄𝛼0 𝛼03$

𝒙0 + 1 − ⁄𝛼0 𝛼03$ ∇𝒙# log 𝑝1# 𝒙0 + 1 − ⁄𝛼0 𝛼03$ 𝒛0

𝒛0 ∼ 𝑁 0, 𝐼 ; 𝑡 ∈ 𝑇, 𝑇 − 1,… , 1

Simulation: 
𝛼- = 0.99-
𝑇 = 1000 (from 𝑡 = 300)
#particles = 103
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Learning Score by DNNs
• The reverse dynamics can be used for sampling data from high-

dimensional complex distributions. 
• Unfortunately, ∇𝒙# log 𝑝1# 𝒙0 cannot be available in practice.
• However, it can be learned by DNNs from augmented samples 

generated by the forward Langevin equation. 
𝑡 = 0𝑡 = 𝑇

⋯
Augmented samples

𝑝-4 𝒙'

Learn 𝑠! 𝒙' , 𝑡 ≃ ∇𝒙4 log 𝑝-4 𝒙' by DNNs 
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Training in Practice
• Generate augmented samples using the forward Langevin equation.
• Train the score using the entire set of augmented samples. 

𝜶2 = 0

𝜃∗ = argmin
)

+
-"#

2
𝔼6$%&% 7' 𝔼6()& 𝒙&|7' 𝑠) 𝒙-, 𝑡 +

𝒙- − 𝛼-𝒙𝟎
1 − 𝛼- 9

9

Modeled by DNN (U-net)

𝜶2.# 𝜶/ = 1⋯

Song and Ermon, Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS2019
Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS2020

𝒙𝟎： training 
data𝒛𝑻：Gaussian 

noise  

𝒙- = ⁄𝛼- 𝛼-.# 𝒙-.# + 1 − ⁄𝛼- 𝛼-.# 𝒛-.# 𝒛-.# ∼ 𝑁 0, 𝐼 ; 𝑡 ∈ 1,2, … , 𝑇
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Sample Generation in Practice
• Generate samples from the trained model by successively running the 

reverse Langevin dynamics from Gaussian initial states. 

𝒛𝑻 ∼ 𝒩 0, 𝐼 :
latent variable

𝒙： new data 

Learned score

𝜶2 = 0 𝜶2.# 𝜶/ = 1⋯

Song and Ermon, Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS2019
Ho et al, Denoising Diffusion Probabilistic Models, NeurIPS2020

𝒙-.# =
1
⁄𝛼- 𝛼-.#

𝒙- + 1 − ⁄𝛼- 𝛼-.# 𝑠) 𝒙-, 𝑡 + 1 − ⁄𝛼- 𝛼-.# 𝒛-
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Generated Samples

Song and Ermon, Generative Modeling by Estimating Gradients of the Data Distribution, NeurIPS2019
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Strength and Weakness of DMs

• Strength
– High-Quality: Can produce highly realistic and high-resolution 

images
– Stability: Training is stable
– Intimacy with probability: Easy to use for various image 

processing tasks

• Weakness
– Computational cost: Significant computational resources for both 

training and data generation
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Applications to Science

• DMs are the current de fact standard for image generation.
• They are also used for various tasks of image processing using DMs 

as prior distribution of target images. 
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Image Completion

• Image reconstruction from incomplete measurements using DMs as 
priors.
– Can be used in a plug-and-play manner.

Presented at ICLR (2023); arXiv:2209.14687
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Conditional Text Image Generation

• Converts input handwritten character images into handwritten 
character images that meet given conditions.

Presented at CVPR (2023); arXiv:2306.10804
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Summary
• We introduced three generative models that are actively studied 

these days. 
• Their comparison is summarized below. 
Model Features Strength Weakness Key 

Applications
GANs - G. and D. compete 

during training
- Produces highly 

realistic outputs

- H.Q. and fast 
data generation

- Tunable for 
specific tasks

- Unstable 
training

- Limited diversity 
in some cases

- Super resolution
- Surrogate 

simulator 
- Other various 

purposes

VAEs - Encoder-decoder 
structure

- Optimizes ELBO

- Effective in 
understanding 
data

- Simple design

- Lower quality 
than GANs and 
DMs

- May not adapt 
to complex data

- Data generation 
- Latent variable 

analysis 
- Anomaly detection 

DMs - Trained by adding 
noise to data 

- Generation by 
reverse process

- H.Q. and diverse 
data generation

- Stable training

- Computationally 
expensive 

- Complex 
training setup

- H.Q. image 
generation 

- Content 
completion

- Conditional 
generation
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Summary

• More recent techniques involve introducing “attention mechanisms” 
into generative models, but we did not cover this here.
– Simply because I don't know much about them. 

• New machine learning methods are proposed every day, but they 
don‘t tell us which purposes we should use them for.

• How to effectively use them for science depends on the ingenuity of 
“domain researchers”.




